zbMATH — the first resource for mathematics

Epidemic dynamics on semi-directed complex networks. (English) Zbl 1283.92056
Summary: An SIS model for epidemic spreading on semi-directed networks is established, which can be used to examine and compare the impact of undirected and directed contacts on disease spread. The model is analyzed for the case of uncorrelated semi-directed networks, and the basic reproduction number \(R_0\) is obtained analytically. We verify that the \(R_0\) contains the outbreak threshold on undirected networks and directed networks as special cases. It is proved that if \(R_0<1\) then the disease-free equilibrium is globally asymptotically stable, otherwise the disease-free equilibrium is unstable and the unique endemic equilibrium exists, which is globally asymptotically stable. Finally numerical simulations for these analytical results are given.

92C60 Medical epidemiology
92C42 Systems biology, networks
92D30 Epidemiology
92-08 Computational methods for problems pertaining to biology
Full Text: DOI
[1] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200, (2001)
[2] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, 066117, (2001)
[3] Boguñá, Marián; Pastor-Satorras, R., Epidemic spreading in correlated complex networks, Phys. Rev. E, 66, 047104, (2002)
[4] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics in finite size scale-free networks, Phys. Rev. E, 65, 035108, (2002)
[5] Broder, A.; Kumar, R.; Maghoul, F.; Raghavan, P.; Rajagopalan, S.; Stata, R.; Tomkins, A.; Wiener, J., Graph structure in the web, Comput. Networks, 33, 309, (2000)
[6] Newman, M. E.J., Spread of epidemic disease on networks, Phys. Rev. E, 66, 016128, (2002)
[7] Ball, F. G.; Sirl, D. J.; Trapman, P., Analysis of a stochastic SIR epidemic on a random network incorporating household structure, Math. Biosci., 224, 2, 53, (2010) · Zbl 1192.92037
[8] Ma, J.; van den Driessche, P.; Willeboordse, F. H., Effective degree household network disease model, J. Math. Biol., 66, 1-2, 75, (2012) · Zbl 1256.92033
[9] Lindquist, J.; Ma, J.; van den Driessche, P.; Willeboordse, F. H., Effective degree network disease models, J. Math. Biol., 62, 143, (2011) · Zbl 1232.92066
[10] Kenah, E.; Robins, J. M., Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing, J. Theor. Biol., 249, 706, (2007)
[11] Wilkinson, R. R.; Sharkey, K. J., An exact relationship between invasion probability and endemic prevalence for Markovian SIS dynamics on networks, PLoS ONE, 8, 7, e69028, (2013)
[12] Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118, (2001)
[13] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167, (2003) · Zbl 1029.68010
[14] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268, (2001) · Zbl 1370.90052
[15] Newman, M. E.J., Assortative mixing in networks, Phys. Rev. Lett., 89, 20, 208701, (2002)
[16] Eames, K. T.D., Modelling disease spread through random and regular contacts in clustered populations, Theor. Population Biol., 73, 104, (2008) · Zbl 1202.92076
[17] Wang, Y.; Jin, Z.; Yang, Z. M.; Zhang, Z. K.; Zhou, T.; Sun, G. Q., Global analysis of an SIS model with an infective vector on complex networks, Nonlinear Anal.: Real World Appl., 13, 543, (2012) · Zbl 1238.92042
[18] Newman, M. E.J., Mixing patterns in networks, Phys. Rev. E, 67, 026126, (2003)
[19] Moreno, Y.; Pastor-Satorras, R.; Vespignani, A., Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26, 521, (2002)
[20] May, R. M.; Lloyd, A. L., Infection dynamics on scale-free networks, Phys. Rev. E, 64, 066112, (2001)
[21] Wang, L.; Dai, G. Z., Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math., 68, 5, 1495, (2008) · Zbl 1146.92031
[22] Dorogovtsev, S. N.; Mendes, J. F.F.; Samukhin, A. N., Giant strongly connected component of directed networks, Phys. Rev. E, 64, 025101(R), (2001)
[23] Schwartz, N.; Cohen, R.; ben-Avraham, D.; Barabási, A.-L.; Havlin, S., Percolation in directed scale-free networks, Phys. Rev. E, 66, 015104, (2002)
[24] Wang, J. Z.; Liu, Z. R., Mean-field level analysis of epidemics in directed networks, J. Phys. A: Math. Theor., 42, 355001, (2009) · Zbl 1176.92046
[25] S. Tanimoto, Epidemic thresholds in directed complex, networks. arXiv:1103.1680v1.
[26] Meyers, L. A.; Newman, M. E.J.; Pourbohloul, B., Predicting epidemic on directed contact networks, J. Theor. Biol., 240, 400, (2006)
[27] Sharkey, K. J.; Fernandez, C. F.; Morgam, K. L.; Peeler, E.; Thrush, M.; Turnbull, J. F.; Bowers, R. G., Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks, J. Math. Biol., 53, 61, (2006) · Zbl 1100.92056
[28] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29, (2002) · Zbl 1015.92036
[29] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 365, (1990) · Zbl 0726.92018
[30] Lajmanovich, A.; Yorke, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 221, (1976) · Zbl 0344.92016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.