×

Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems. (English) Zbl 1283.93230

Summary: In this paper, the problem of output-feedback stabilization is investigated for the first time for a class of stochastic nonlinear systems whose zero dynamics may be unstable. Under the assumption that the inverse dynamics of the system is stochastic input-to-state stabilizable, a stabilizing output-feedback controller is constructively designed by the integrator backstepping method together with a new reduced-order observer design and the technique of changing supply functions. It is shown that, under small-gain type conditions for small signals, the resulting closed-loop system is globally asymptotically stable in probability. The obtained results extend the existing methodology from deterministic systems to stochastic systems. An example is given to demonstrate the main features and effectiveness of the proposed output-feedback control scheme.

MSC:

93D15 Stabilization of systems by feedback
93E12 Identification in stochastic control theory
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Andrieu, V.; Praly, L., Global asymptotic stabilization by output feedback for some non minimum phase non linear systems, (), 2622-2627
[2] Arslan, G.; Başar, T., Risk-sensitive adaptive trackers for strict-feedback systems with output measurements, IEEE transactions on automatic control, 47, 10, 1754-1758, (2002) · Zbl 1364.93745
[3] Battilotti, S., A note on reduced order stabilizing output feedback controllers, Systems and control letters, 30, 2, 71-81, (1997) · Zbl 0901.93056
[4] Deng, H.; Krstić, M., Output-feedback stochastic nonlinear stabilization, IEEE transactions on automatic control, 44, 2, 328-333, (1999) · Zbl 0958.93095
[5] Deng, H.; Krstić, M., Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance, Systems and control letters, 39, 1, 173-182, (2000) · Zbl 0948.93053
[6] Deng, H.; Krstić, M.; Williams, R.J., Stabilization of stochastic nonlinear systems driven by noise of unknown covariance, IEEE transactions on automatic control, 46, 8, 1237-1252, (2001) · Zbl 1008.93068
[7] Florchinger, P., Lyapunov-like techniques for stochastic stability, SIAM journal on control and optimization, 33, 4, 1151-1169, (1995) · Zbl 0845.93085
[8] Has’minskii, R.Z., Stochastic stability of differential equations, (1980), Kluwer Academic Publishers Norwell, MA · Zbl 0276.60059
[9] Huang, J., Nonlinear output regulation: theory and applications, (2004), SIAM · Zbl 1087.93003
[10] Isidori, A., Nonlinear control systems, vol. II, (1999), Springer-Verlag London · Zbl 0924.93038
[11] Isidori, A., A tool for semi-global stabilization of uncertain non-minimum-phase nonlinear systems via output feedback, IEEE transactions on automatic control, 45, 10, 1817-1827, (2000) · Zbl 0990.93115
[12] Jiang, Z.P., A combined backstepping and small-gain approach to adaptive output feedback control, Automatica, 35, 6, 1131-1139, (1999) · Zbl 0932.93045
[13] Jiang, Z.P.; Praly, L., Design of robust adaptive controller for nonlinear systems with dynamic uncertainties, Automatica, 34, 7, 825-840, (1998) · Zbl 0951.93042
[14] Karagiannis, D.; Ortega, R.; Astolfi, A., Two results for adaptive output feedback stabilization of nonlinear systems, Automatica, 39, 5, 857-866, (2003) · Zbl 1023.93054
[15] Karagiannis, D.; Jiang, Z.P.; Ortega, R.; Astolfi, A., Output-feedback stabilization of a class of uncertain non-minimum-phase nonlinear systems, Automatica, 41, 9, 1609-1615, (2005) · Zbl 1086.93021
[16] Kokotović, P.V.; Arcak, M., Constructive nonlinear control: A historical perspective, Automatica, 37, 5, 637-662, (2001) · Zbl 1153.93301
[17] Krishnamurthy, P.; Khorrami, F.; Jiang, Z.P., Global output feedback tracking for nonlinear systems in generalized output feedback form, IEEE transactions on automatic control, 47, 5, 814-819, (2002) · Zbl 1364.93109
[18] Krstić, M.; Deng, H., Stabilization of nonlinear uncertain systems, (1998), Springer-Verlag London · Zbl 0906.93001
[19] Krstić, M.; Kanellakopoulos, I.; Kokotović, P.V., Nonlinear and adaptive control design, (1995), Wiley New York · Zbl 0763.93043
[20] Liu, S.J.; Zhang, J.F., Output-feedback control of a class of stochastic nonlinear systems with linearly bounded unmeasurable states, International journal of robust and nonlinear control, 18, 6, 665-687, (2008) · Zbl 1284.93241
[21] Liu, S.J.; Zhang, J.F.; Jiang, Z.P., Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43, 2, 238-251, (2007) · Zbl 1115.93076
[22] Liu, S.J.; Zhang, J.F.; Jiang, Z.P., A notion of stochastic input-to-state stability and its application to stability of cascaded stochastic nonlinear systems, Acta mathematicae applicatae sinica (English series), 24, 1, 141-156, (2008) · Zbl 1142.93034
[23] Liu, Y.G.; Pan, Z.G.; Shi, S.J., Output feedback control design for strict-feedback stochastic nonlinear systems under a risk-sensitive cost, IEEE transactions on automatic control, 48, 3, 509-513, (2003) · Zbl 1364.93283
[24] Liu, Y.G.; Zhang, J.F.; Pan, Z.G., Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index, Science in China (series F), 46, 126-145, (2003) · Zbl 1185.93046
[25] Liu, Y.G.; Zhang, J.F., Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero-dynamics, SIAM journal on control and optimization, 45, 3, 885-926, (2006) · Zbl 1117.93067
[26] Mazenc, F.; Praly, L.; Dayawansa, W.D., Global stabilization by output feedback: examples and counterexamples, Systems and control letters, 23, 2, 119-125, (1994) · Zbl 0816.93068
[27] Marino, R.; Tomei, P., Dynamic output feedback linearization and global stabilization, Systems and control letters, 17, 2, 115-121, (1991) · Zbl 0747.93069
[28] Marino, R.; Tomei, P., A class of globally output feedback stabilizable nonlinear nonminimum phase systems, IEEE transactions on automatic control, 50, 12, 2097-2101, (2005) · Zbl 1365.93408
[29] Pan, Z.G., Canonical forms for stochastic nonlinear systems, Automatica, 38, 7, 1163-1170, (2002) · Zbl 1004.93005
[30] Pan, Z.G.; Başar, T., Adaptive controller design for tracking and disturbance attenuation in parametric-feedback nonlinear systems, IEEE transactions on automatic control, 43, 8, 1066-1083, (1998) · Zbl 0957.93046
[31] Pan, Z.G.; Başar, T., Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM journal on control and optimization, 37, 3, 957-995, (1999) · Zbl 0924.93046
[32] Pan, Z.G.; Liu, Y.G.; Shi, S.J., Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics, Science in China (series F), 44, 4, 292-308, (2001) · Zbl 1125.93489
[33] Praly, L.; Jiang, Z.P., Stabilization by output feedback for systems with ISS inverse dynamics, Systems and control letters, 21, 1, 19-33, (1993) · Zbl 0784.93088
[34] Praly, L., Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate, IEEE transactions on automatic control, 48, 6, 1103-1108, (2003) · Zbl 1364.93718
[35] Teel, A.; Praly, L., Global stabilizability and observability imply semi-global stabilizability by output feedback, Systems and control letters, 22, 5, 313-325, (1994) · Zbl 0820.93054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.