×

A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis. (English) Zbl 1284.62361

Summary: A new approach for fitting the exploratory factor analysis (EFA) model is considered. The EFA model is fitted directly to the data matrix by minimizing a weighted least squares (WLS) goodness-of-fit measure. The WLS fitting problem is solved by iteratively performing unweighted least squares fitting of the same model. A convergent reweighted least squares algorithm based on iterative majorization is developed. The influence of large residuals in the loss function is curbed using Huber’s criterion. This procedure leads to robust EFA that can resist the effect of outliers in the data. Applications to real and simulated data illustrate the performance of the proposed approach.

MSC:

62H25 Factor analysis and principal components; correspondence analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Becker, C.; Gather, U., The largest nonidentifiable outlier: A comparison of multivariate simultaneous outlier identification rules, Computational statistics & data analysis, 36, 119-127, (2001) · Zbl 1080.62519
[2] Croux, C.; Filzmoser, P.; Pison, G.; Rousseeuw, P.J., Fitting multiplicative models by robust alternating regressions, Statistics and computing, 13, 23-36, (2003)
[3] De Leeuw, J., Block relaxation algorithms in statistics, (), 308-324 · Zbl 0829.65144
[4] De Leeuw, J., Least squares optimal scaling of partially observed linear systems, (), 121-134 · Zbl 05196650
[5] De Leeuw, J., 2008. Factor analysis as matrix decomposition. Preprint series: Department of Statistics, University of California, Los Angeles.
[6] De Leeuw, J.; Lange, K., Sharp quadratic majorization in one dimension, Computational statistics & data analysis, 53, 2471-2484, (2009) · Zbl 1453.62078
[7] Filzmoser, P., Robust principal components and factor analysis in the geostatistical treatment of environmental data, Environmetrics, 10, 363-375, (1999)
[8] Filzmoser, P., Robust factor analysis: methods and applications, (), 153-194
[9] Gabriel, K.R.; Zamir, S., Lower rank approximation of matrices by least squares with any choice of weights, Technometrics, 21, 489-498, (1979) · Zbl 0471.62004
[10] Groenen, P.J.F., Giaquinto, P., Kiers, H.A.L., 2003. Weighted majorization algorithms for weighted least squares decomposition models. Econometric Institute Report EI 2003-09, Erasmus University Rotterdam.
[11] Groenen, P.J.F.; Giaquinto, P.; Kiers, H.A.L., An improved majorization algorithm for robust procrustes analysis, (), 151-158 · Zbl 1341.62180
[12] Harman, H.H., Modern factor analysis, (1976), University of Chicago Press Chicago · Zbl 0161.39805
[13] Heiser, W.J., Convergent computation by iterative majorization: theory and applications in multidimensional data analysis, (), 157-189
[14] Huber, P.J., Robust statistics, (1981), John Wiley & Sons New York · Zbl 0536.62025
[15] Johnson, R.A.; Wichern, D.W., Applied multivariate statistical analysis, (2002), Prentice Hall Upper Saddle River, NJ
[16] Kiers, H.A.L., Weighted least squares Fitting using ordinary least squares algorithms, Psychometrika, 62, 251-266, (1997) · Zbl 0873.62058
[17] Kosfeld, R., Robust exploratory factor analysis, Statistical papers, 37, 105-122, (1996) · Zbl 0856.62053
[18] Mavridis, D.; Moustaki, I., Detecting outliers in factor analysis using the forward search algorithm, Multivariate behavioral research, 43, 453-475, (2008)
[19] Mosteller, F.; Tukey, J.W., Data analysis and regression, (1977), Addison-Wesley Reading, Massachusetts
[20] Mulaik, S.A., The foundations of factor analysis, (1972), McGraw-Hill New York · Zbl 1182.62133
[21] Mulaik, S.A., Looking back on the indeterminacy controversies in factor analysis, (), 173-206
[22] Pison, G.; Rousseeuw, P.J.; Filzmoser, P.; Croux, C., Robust factor analysis, Journal of multivariate analysis, 84, 145-172, (2003) · Zbl 1038.62055
[23] Rousseeuw, P.J., Multivariate estimation with high breakdown point, (), 283-297
[24] Rousseeuw, P.J.; Leroy, A.M., Robust regression and outlier detection, (1987), John Wiley & Sons Hoboken, New Jersey · Zbl 0711.62030
[25] Trendafilov, N.T., Unkel, S., 2010. Exploratory factor analysis of data matrices with more variables than observations (submitted for publication). · Zbl 1305.65081
[26] Verboon, P., A robust approach to nonlinear multivariate analysis, (1994), DSWO Press Leiden · Zbl 0868.62052
[27] Verboon, P.; Heiser, W.J., Resistant orthogonal procrustes analysis, Journal of classification, 9, 237-256, (1992) · Zbl 0755.62050
[28] Wold, H., Nonlinear estimation by iterative least squares procedures, (), 411-444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.