×

Variational multiscale stabilization of high-order spectral elements for the advection-diffusion equation. (English) Zbl 1284.65119

Summary: One major issue in the accurate solution of advection-dominated problems by means of high-order methods is the ability of the solver to maintain monotonicity. This problem is critical for spectral elements, where Gibbs oscillations may pollute the solution. However, typical filter-based stabilization techniques used with spectral elements are not monotone. In this paper, residual-based stabilization methods originally derived for finite elements are constructed and applied to high-order spectral elements. In particular, we show that the use of the variational multiscale (VMS) method greatly improves the solution of the transport-diffusion equation by reducing over- and under-shoots, and can be therefore considered an alternative to filter-based schemes. We also combine these methods with discontinuity capturing schemes (DC) to suppress oscillations that may occur in proximity of boundaries or internal layers. Additional improvement in the solution is also obtained when a method that we call FOS (for First-Order Subcells) is used in combination with VMS and DC. In the regions where discontinuities occur, FOS subdivides a spectral element of order \(p\) into \(p^{2}\) subcells and then uses 1st-order basis functions and integration rules on every subcell of the element. The algorithms are assessed with the solution of classical steady and transient 1D, 2D, and pseudo-3D problems using spectral elements up to order 16.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76R50 Diffusion

Software:

Octave
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Klemp, J.; Wilhelmson, R., The simulation of three-dimensional convective storm dynamics, J. atmos. sci., 35, 1070-1096, (1978)
[2] G. Doms, J. Forstner, E. Heise, H.-J. Herzog, M. Raschendorfer, T. Reinhardt, B. Ritter, R. Schrodin, J.-P. Schulz, G. Vogel, A description of the nonhydrostatic regional model LM. part II: physical parameterization, Technical Report, COSMO, 2007.
[3] Restelli, M.; Bonaventura, L.; Sacco, R., A semi-Lagrangian discontinuous Galerkin method for the scalar advection by incompressible flows, J. comput. phys., 216, 195-215, (2006) · Zbl 1090.76045
[4] Hughes, T.J.R.; Brooks, A.N., A multidimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[5] Lax, P.D., Accuracy and resolution in the computation of solutions of linear and nonlinear equations, () · Zbl 0146.13701
[6] Hughes, T., Multiscale phenomena: green’s functions the Dirichlet-to-Neumann formulation subgrid scale models bubbles and the origins of stabilized methods, Comput. meth. appl. mech. eng., 127, 387-401, (1995) · Zbl 0866.76044
[7] Hughes, T.J.R.; Feijoo, G.; Mazzei, L.; Quincy, J., The variational multiscale method - A paradigm for computational mechanics, Comput. meth. appl. mech. eng., 166, 3-24, (1998) · Zbl 1017.65525
[8] Johnson, C., Numerical solution of partial differential equations by the finite element method, (1987), Cambridge University Press
[9] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. meth. appl. mech. eng., 32, 199-259, (1982) · Zbl 0497.76041
[10] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. meth. appl. mech. eng., 73, 173-189, (1989) · Zbl 0697.76100
[11] Johnson, C.; Nävert, U.; Pitkaranta, J., Finite element methods for linear hyperbolic problems, Comput. meth. appl. mech. eng., 45, 285-312, (1984) · Zbl 0526.76087
[12] U. Nävert, A finite element method for convection-diffusion problems, Ph.D. thesis, Department of Computer Science, Chalmers University of Technology, Goteborg, Sweden, 1982.
[13] Harari, I.; Hughes, T.J.R., Stabilized finite element methods for steady advection-diffusion with production, Comput. meth. appl. mech. eng., 115, 165-191, (1994)
[14] Franca, L.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Comput. meth. appl. mech. eng., 123, 299-308, (1995) · Zbl 1067.76567
[15] Franca, L.; Valentin, F., On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation, Comput. meth. appl. mech. eng., 190, 1785-1800, (2001) · Zbl 0976.76038
[16] Pasquarelli, F.; Quarteroni, A., Effective spectral approximations of convection-diffusion equations, Comput. meth. appl. mech. eng., 116, 39-51, (1994) · Zbl 0826.76072
[17] Canuto, C., Stabilization of spectral methods by finite element bubble functions, Comput. meth. appl. mech. eng., 116, 13-26, (1994) · Zbl 0826.76056
[18] Canuto, C.; Puppo, G., Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, Comput. meth. appl. mech. eng., 118, 239-263, (1994) · Zbl 0847.76059
[19] Canuto, C.; Van Kemenade, V., Bubble-stabilized spectral methods for the incompressible Navier-Stokes equations, Comput. meth. appl. mech. eng., 135, 35-61, (1996) · Zbl 0894.76057
[20] Hughes, T.J.R.; Stewart, J., A space-time formulation for multiscale phenomena, J. comput. appl. math., 74, 217-229, (1996) · Zbl 0869.65061
[21] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis CAD finite elements NURBS exact geometry and mesh refinement, Comput. meth. appl. mech. eng., 194, 4135-4195, (2005) · Zbl 1151.74419
[22] Godunov, S., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. sb., 47, 271-306, (1959), translated US Joint Publications Research Service, JPRS 7226, 1969 · Zbl 0171.46204
[23] Wasberg, C.E.; Gjesdal, T.; Reif, B.A.P.; Andreassen, O., Variational multiscale turbulence modelling in a high order spectral element method, J. comput. phys., 228, 7333-7356, (2009) · Zbl 1172.76021
[24] Hughes, T.J.R.; Mallet, M.; Mizukami, A., A new finite element formulation for computational fluid dynamics II beyond SUPG, Comput. meth. appl. mech. eng., 54, 341-355, (1986) · Zbl 0622.76074
[25] Tezduyar, T.E.; Park, Y.J., Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput. meth. appl. mech. eng., 59, 307-325, (1986) · Zbl 0593.76096
[26] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part I - a review, Comput. meth. appl. mech. eng., 196, 2197-2215, (2007) · Zbl 1173.76342
[27] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: part II - analysis for \(P_1\) and \(Q_1\) finite elements, Comput. meth. appl. mech. eng., 197, 1997-2014, (2008) · Zbl 1194.76122
[28] Codina, R., A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput. meth. appl. mech. eng., 110, 325-342, (1993) · Zbl 0844.76048
[29] Franca, L.; Frey, S.; Hughes, T., Stabilized finite element methods. I: application to the advective-diffusive model, Comput. meth. appl. mech. eng., 95, 2, 253-276, (1992) · Zbl 0759.76040
[30] Codina, R., Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. meth. appl. mech. eng., 156, 185-210, (1998), 26 · Zbl 0959.76040
[31] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. meth. appl. mech. eng., 190, 1579-1599, (2000) · Zbl 0998.76047
[32] Codina, R.; Oñate, E.; Cervera, M., The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements, Comput. meth. appl. mech. eng., 94, 239-262, (1992) · Zbl 0748.76082
[33] Shakib, F.; Hughes, T.J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput. meth. appl. mech. eng., 89, 141-291, (1991) · Zbl 0838.76040
[34] Hughes, T.; Sangalli, G., Variational multiscale analysis: the finite-scale green’s function projection optimization localization and stabilized methods, SIAM J. numer. anal., 45, 539-557, (2007) · Zbl 1152.65111
[35] Houzeaux, G.; Eguzkitza, B.; Vázquez, M., A variational multiscale model for the advection-diffusion-reaction equation, Commun. numer. meth. eng., 25, 787-809, (2009) · Zbl 1168.65413
[36] Hauke, G.; Garca-Olivares, A., Variational subgrid formulations for the advection-diffusion-reaction equation, Comput. meth. appl. mech. eng., 190, 6847-6865, (2001) · Zbl 0996.76074
[37] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. meth. appl. mech. eng., 191, 4295-4321, (2002) · Zbl 1015.76045
[38] Quarteroni, A.; Valli, A., Numerical approximation of partial differential equations, (1994), Springer · Zbl 0852.76051
[39] Giraldo, F.X., The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids, J. comput. phys., 147, 114-146, (1998) · Zbl 0920.65070
[40] Karniadakis, G.; Sherwin, S., Spectral/hp element methods for CFD, (1999), Oxford University Press London · Zbl 0954.76001
[41] Spiteri, R.J.; Ruuth, S.J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. numer. anal., 40, 469-491, (2002) · Zbl 1020.65064
[42] Vandeven, H., Family of spectral filters for discontinuous problems, J. sci. comput., 6, 159-192, (1991) · Zbl 0752.35003
[43] Boyd, J.P., Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods, J. comput. phys., 143, 283-288, (1998) · Zbl 0920.65046
[44] Fischer, P.F.; Mullen, J.S., Filter-based stabilization of spectral element methods, C. R. acad. sci. - ser. I - math., 332, 265-270, (2001) · Zbl 0990.76064
[45] Giraldo, F.X., Semi-implicit time-integrators for a scalable spectral element atmospheric model, Q. J. R. meteorol. soc., 131, 2431-2454, (2005)
[46] Douglas, J.; Wang, J., An absolutely stabilized finite element method, Math. comput., 52, 495-508, (1989) · Zbl 0669.76051
[47] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advective-diffusive systems, Comput. meth. appl. mech. eng., 58, 305-328, (1986) · Zbl 0622.76075
[48] Hughes, T.J.R.; Tezduyar, T., Finite element methods for first-order hyperbolic systems with particular emphasis pn the compressible Euler equations, Comput. meth. appl. mech. eng., 45, 217-284, (1984) · Zbl 0542.76093
[49] Franca, L.; Frey, S., Stabilized finite element methods II: the incompressible Navier-Stokes equations, Comput. meth. appl. mech. eng., 99, 209-233, (1992) · Zbl 0765.76048
[50] Brezzi, F.; Bristeau, M.; Franca, L.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method viwth bubble functions, Comput. meth. appl. mech. eng., 96, 117-129, (1992) · Zbl 0756.76044
[51] Tezduyar, T.; Senga, M., SUPG finite element computation of inviscid supersonic flows with \(\mathit{yz} \beta\) shock-capturing, Comput. fluids, 36, 147-159, (2007) · Zbl 1127.76029
[52] Canuto, C.; Russo, A.; Van Kemenade, V., Stabilized spectral methods for the Navier-Stokes equations: residual-free bubbles and preconditioning, Comput. meth. appl. mech. eng., 166, 65-83, (1998) · Zbl 0940.76058
[53] Baiocchi, C.; Brezzi, F.; Franca, L., Virtual bubbles and the Galerkin-least-squares method, Comput. meth. appl. mech. eng., 105, 121-141, (1993) · Zbl 0772.76033
[54] Brezzi, F.; Franca, L.P.; Hughes, T.R.; Russo, A., \(b = \int g\), Comput. meth. appl. mech. eng., 145, 329-339, (1997) · Zbl 0904.76041
[55] Johnson, C.; Schatz, A.H.; Wahlbin, L.B., Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. comput., 59, 25-38, (1987) · Zbl 0629.65111
[56] Nair, R.D.; Lauritzen, P.H., A class of deformational flow test cases for linear transport problems on the sphere, J. comput. phys., 229, 8868-8887, (2010) · Zbl 1282.86012
[57] S. Gaberšek, F.X. Giraldo, J. Doyle, Dry and moist idealized experiments with a two-dimensional spectral element model, Mon. Wea. Rev., in press. Available from: <http://dx.doi.org/10.1175/MWR-D-11-00144.1>.
[58] J.W. Eaton, GNU Octave Manual, Network Theory Limited, 2002.
[59] Bazilevs, Y.; Calo, V.M.; Tezduyar, T.E.; Hughes, T.J.R., YZ\(\beta\) discontinuity capturing for advection-dominated processes with application to arterial drug delivery, Int. J. numer. meth. fluids, 54, 593-608, (2007) · Zbl 1207.76049
[60] Levy, M.; Nair, R.; Tufo, H., High-order Galerkin methods for scalable global atmospheric models, Comput. geosci., 33, 1022-1035, (2007)
[61] Nair, R.D.; Levy, M.N.; Lauritzen, P.H., Emerging numerical methods for atmospheric modeling, (), 251-311
[62] Thomas, S.; Hacker, J.; Smolarkiewicz, P.; Stull, R., Spectral preconditioners for nonhydrostatic atmospheric models, Mon. wea. rev., 131, 2464-2491, (2003)
[63] J.F. Kelly, F.X. Giraldo, Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode, J. Comput. Phys., in press. Available from: <http://dx.doi.org/10.1016/j.jcp.2012.04.042>. · Zbl 1284.65134
[64] S. Marras, M. Moragues, M.R. Vázquez, O. Jorba, G. Houzaux, A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows, J. Comput. Phys., submitted. · Zbl 1286.65126
[65] Taylor, M.; Tribbia, J.; Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. comput. phys., 130, 92-108, (1997) · Zbl 0868.76072
[66] Giraldo, F.X.; Rosmond, T., A scalable spectral element Eulerian atmospheric model (SEE-AM) for numerical weather prediction: dynamical core tests, Mon. wea. rev., 132, 133-153, (2004)
[67] Levin, J.; Iskandarani, M.; Haidvogel, D., A spectral filtering procedure for eddy-resolving simulations with the spectral element Ocean model, J. comput. phys., 137, 130-154, (1997) · Zbl 0898.76082
[68] Fournier, A.; Taylor, M.; Tribbia, J., The spectral element atmosphere model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics, Mon. wea. rev., 132, 726-748, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.