zbMATH — the first resource for mathematics

Optimal distribution of porous media to reduce trailing edge noise. (English) Zbl 1284.76359
Summary: In a variety of technical applications the reduction of trailing edge noise is a matter of particular concern. The focus of the present study is to minimize trailing edge noise by adding an optimized porous medium to the existing geometry of the trailing edge. The optimization with respect to the noise reduction is based on iterative adjoint methods. Thus, the gradient of the objective function with respect to the control – the spacial distribution of the permeability – is obtained by solving an adjoint equation backwards in time. The mathematical framework of the governing compressible and porous Navier-Stokes equations and its corresponding adjoint equations, to obtain the gradient, is presented and validated on a two-dimensional example. The iterative method has proven effective an efficient in minimizing aeroacoustic noise within only five iterations. This technique can be used in aeroacoustic and other applications where the (shape) optimization of (porous) material is desirable.

76S05 Flows in porous media; filtration; seepage
76G25 General aerodynamics and subsonic flows
Full Text: DOI
[1] Bewley, T. R., Flow control: new challenges for a new renaissance, Prog Aerosp Sci, 37, 21-58, (2001)
[2] Brooks, T.; Hodgson, T., Trailing edge noise prediction from measured surface pressures, J Sound Vib, 78, 69-117, (1981)
[3] Bruneau, C.-H.; Mortazavi, I., Numerical modelling and passive flow control using porous media, Comput Fluids, 37, 488-498, (2008), [Special Issue Dedicated to Professor M.M. Hafez on the Occasion of his 60th Birthday] · Zbl 1237.76189
[4] Cervino LI, Bewley TR, Freund JB, Lele SK. Perturbation and adjoint analyses of flow-acoustic interactions in an unsteady 2d jet. In: CTR proc. summer program; 2002. p. 27-40.
[5] Collis, S. S.; Ghayour, K.; Heinkenschloss, M., Optimal transpiration boundary control for aeroacoustics, AIAA J, 41, 1257-1270, (2003)
[6] Collis, S. S.; Ghayour, K.; Heinkenschloss, M.; Ulbrich, M.; Ulbrich, S., Optimal control of unsteady compressible viscous flows, Int J Numer Methods Fluids, 40, 1401-1429, (2002) · Zbl 1025.76045
[7] Darcy, H., LES fontaines publiques de la ville de Dijon, (1856), Victor Dalmont Paris
[8] Freund, J. B., Adjoint-based optimization for understanding and suppressing jet noise, J Sound Vib, 330, 4114-4122, (2011)
[9] Fulks, W. B.; Guenther, R. B.; Roetman, E. L., Equation of motion and continuity of fluid flow in a porous medium, Acta Mechanica, 12, 121-129, (1971) · Zbl 0268.76066
[10] Geyer, T.; Sarradj, E.; Fritzsche, C., Measurement of the noise generation at the trailing edge of porous airfoils, Exp Fluids, 48, 291-308, (2010), doi:10.1007/s00348-009-0739-x
[11] Howe, M. S., A review of the theory of trailing edge noise, J Sound Vib, 61, 437-465, (1978) · Zbl 0399.76076
[12] Kevlahan, N. K.R.; Ghidaglia, J.-M., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur J Mech - B/Fluids, 20, 333-350, (2001) · Zbl 1020.76037
[13] Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J.-P., Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int J Numer Methods Fluids, 34, 651-684, (2000) · Zbl 1032.76041
[14] Kramer, J.; Jecl, R.; Skerget, L., Heat and mass transfer porous medium saturated with compressible fluid with boundary domain integral method, Defect Diffus Forum, 808-813, (2008) · Zbl 1195.76373
[15] Lai, H.; Luo, K., A conceptual study of cavity aeroacoustics control using porous media inserts, Flow Turbul Combust, 80, 375-391, (2008), doi:10.1007/s10494-007-9129-8 · Zbl 1257.76114
[16] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J Comput Phys, 103, 16-42, (1992) · Zbl 0759.65006
[17] Lin CJ. Projected gradient methods for non-negative matrix factorization. Technical Report Neural Comp.; 2007.
[18] Liu, Q.; Vasilyev, O. V., A Brinkman penalization method for compressible flows in complex geometries, J Comput Phys, 227, 946-966, (2007) · Zbl 1388.76259
[19] Manoha, E.; Sagaut, P.; Troff, B., Trailing-edge noise prediction using large-eddy simulation and acoustic analogy, AIAA J, 38, 575-583, (2000)
[20] Marsden, A. L.; Wang, M.; Dennis, J. E.; Moin, P., Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation, J Fluid Mech, 572, 13-36, (2007) · Zbl 1145.76044
[21] Polak, E., Optimization: algorithms and consistent approximations, (1997), Springer New York · Zbl 0899.90148
[22] Rumpfkeil, M. P.; Zingg, D. W., Far-field noise minimization using an adjoint approach, (Choi, H.; Choi, H. G.; Yoo, J. Y., Computational fluid dynamics 2008, (2009), Springer Berlin, Heidelberg), 69-75, doi:10.1007/978-3-642-01273-0_6
[23] Sandham N, Luedeke H. A numerical study of mach 6 boundary layer stabilization by means of a porous surface. AIAA-2009-1288; 2009.
[24] Schulze, J.; Schmid, P.; Sesterhenn, J., Exponential time integration using Krylov subspaces, Int J Numer Methods Fluids, 60, 591-609, (2009) · Zbl 1163.76038
[25] Schulze, J.; Schmid, P.; Sesterhenn, J., Iterative optimization based on an objective functional in frequency-space with application to jet-noise cancellation, J Comput Phys, 230, 6075-6098, (2011) · Zbl 1419.76560
[26] Sesterhenn, J., A characteristic-type formulation of the Navier-Stokes equations for high order upwind schemes, Comput Fluids, 30, 37-67, (2000) · Zbl 0991.76056
[27] Spagnoli, B.; Airiau, C., Adjoint analysis for noise control in a two-dimensional compressible mixing layer, Comput Fluids, 37, 475-486, (2008), [turbulent flow and noise generation] · Zbl 1237.76179
[28] Wei, M.; Freund, J. B., A noise-controlled free shear flow, J Fluid Mech, 546, 123-152, (2006) · Zbl 1222.76084
[29] Zymaris, A.; Papadimitriou, D.; Giannakoglou, K.; Othmer, C., Adjoint wall functions: a new concept for use in aerodynamic shape optimization, J Comput Phys, 229, 5228-5245, (2010) · Zbl 1346.76059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.