zbMATH — the first resource for mathematics

Normal stresses in concentrated non-Brownian suspensions. (English) Zbl 1284.76378
Summary: We present an experimental approach used to measure both normal stress differences and the particle phase contribution to the normal stresses in suspensions of non-Brownian hard spheres. The methodology consists of measuring the radial profile of the normal stress along the velocity gradient direction in a torsional flow between two parallel discs. The values of the first and the second normal stress differences, \(N_1\) and \(N_2\), are deduced from the measurement of the slope and of the origin ordinate. The measurements are carried out for a wide range of particle volume fractions (between 0.2 and 0.5). As expected, \(N_2\) is measured to be negative but \(N_1\) is found to be positive. We discuss the validity of the method and present numerous tests that have been carried out in order to validate our results. The experimental setup also allows the pore pressure to be measured. Then, subtracting the pore pressure from the total stress, \(\Sigma_{22}\), the contribution of the particles to the normal stress \(\Sigma^p_{22}\) is obtained. Most of our results compare well with the different experimental and numerical data present in the literature. In particular, our results show that the magnitude of the particle stress tensor component and their dependence on the particle volume fraction used in the suspension model balance proposed by J. F. Morris and F. Boulay [J. Rheol. 43, No. 5, 1213ff (1999)] are suitable.

76T20 Suspensions
76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
Full Text: DOI
[1] DOI: 10.1122/1.2234366
[2] DOI: 10.1007/s003970050184
[3] DOI: 10.1122/1.550631
[4] DOI: 10.1103/PhysRevLett.107.188301
[5] Savoirs Actuels, EDP Sciences/CNRS editions (2001)
[6] DOI: 10.1017/jfm.2011.272 · Zbl 1241.76008
[7] DOI: 10.1122/1.549584
[8] DOI: 10.1103/PhysRevLett.107.208302
[9] DOI: 10.1122/1.3582848
[10] DOI: 10.1103/PhysRevLett.102.108301
[11] Fluid Mechanics vol. 1 (1977)
[12] DOI: 10.1017/jfm.2011.315 · Zbl 1241.76014
[13] DOI: 10.1016/0301-9322(93)90043-T · Zbl 1144.76334
[14] DOI: 10.1063/1.868147
[15] DOI: 10.1122/1.551083
[16] DOI: 10.1017/S0022112009993454 · Zbl 1189.76677
[17] DOI: 10.1122/1.549147
[18] DOI: 10.1146/annurev.fluid.36.050802.122132 · Zbl 1117.76066
[19] DOI: 10.1017/S0022112003005366 · Zbl 1063.76512
[20] DOI: 10.1122/1.1501925
[21] Trans. Inst. Chem. Engng 32 pp 35– (1954)
[22] DOI: 10.1122/1.3372837
[23] DOI: 10.1016/0301-9322(95)00018-S · Zbl 1135.76520
[24] DOI: 10.1017/S0022112096002170
[25] DOI: 10.1063/1.858498 · Zbl 0742.76009
[26] DOI: 10.1122/1.549944
[27] DOI: 10.1122/1.2188528
[28] DOI: 10.1063/1.3570921 · Zbl 06422343
[29] DOI: 10.1017/S0022112094002326 · Zbl 0925.76835
[30] DOI: 10.1122/1.551021
[31] DOI: 10.1140/epje/i2009-10530-7
[32] J. Phys. II France 5 pp 1597– (1995)
[33] DOI: 10.1122/1.2079247
[34] DOI: 10.1007/BF01993718
[35] DOI: 10.1063/1.3079672 · Zbl 1183.76304
[36] DOI: 10.1016/j.jnnfm.2007.10.012 · Zbl 1273.76413
[37] DOI: 10.1017/S0022112097006320 · Zbl 0927.76006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.