×

zbMATH — the first resource for mathematics

A new image segmentation algorithm with applications to image inpainting. (English) Zbl 1284.94012
Summary: We describe a new approach to perform image segmentation. First an image is locally modeled using a spatial autoregressive model for the image intensity. Then the residual autoregressive image is computed. This resulting image possesses interesting texture features. The borders and edges are highlighted, suggesting that our algorithm can be used for border detection. Experimental results with real images are provided to verify how the algorithm works in practice. A robust version of our algorithm is also discussed, to be used when the original image is contaminated with additive outliers. A novel application in the context of image inpainting is also offered.

MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
62H30 Classification and discrimination; cluster analysis (statistical aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allende, H.; Galbiati, J.; Vallejos, R., Robust image modeling on image processing, Pattern recognition letters, 22, 1219-1231, (2001)
[2] Allende, H.; Galbiati, J., A non-parametric filter for digital image restoration, using cluster analysis, Pattern recognition letters, 25, 841-847, (2004)
[3] Ballester, C., Caselles, V., Verdera, J., Bertalmio, M., Sapiro, G., 2001. A variational model for filling-in gray level and color images. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 1, pp. 10-16. · Zbl 1037.68771
[4] Baran, S.; Pap, G.; Van Zuijlen, M.C.A., Asymptotic inference for a nearly unstable sequence of stationary spatial AR models, Statistics & probability letters, 69, 53-61, (2004) · Zbl 1075.62078
[5] Basu, S.; Reinsel, G., Properties of the spatial unilateral first-order ARMA model, Advances in applied probability, 25, 631-648, (1993) · Zbl 0780.62072
[6] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., 2000. Image inpainting. In: Proc. ACM Conf. Comp. Graphics, SIGGRAPH, pp. 417-424.
[7] Bertalmio, M., Sapiro, G., Vese, O., 2003. Simultaneous structure and texture image inpainting. In: Proc. Conf. Comp Vision Pattern Rec., Madison, WI.
[8] Besag, J., Spatial interaction and the statistical analysis of lattice systems (with discussion), Journal of the royal statistical society series B, 55, 192-236, (1974) · Zbl 0327.60067
[9] Bustos, O.; Yohai, V., Robust estimates for ARMA models, Journal of the American statistical association, 81, 55-68, (1986)
[10] Bustos, O., Robust statistics in SAR image processing, Esa-sp, 407, 81-89, (1997)
[11] Bustos, O.; Ruiz, M.; Ojeda, S.; Vallejos, R.; Frery, A., Asymptotic behavior of RA-estimates in autoregressive processes, Journal of statistical planning and inference, 139, 3649-3664, (2009) · Zbl 1167.62074
[12] Bustos, O.; Ojeda, S.; Vallejos, R., Spatial ARMA models and its applications to image filtering, Brazilian journal of probability and statistics, 23, 141-165, (2009) · Zbl 1298.62162
[13] Cariou, C.; Chehdi, K., Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation – maximization algorithm, Pattern recognition letters, 29, 905-917, (2008)
[14] Chang, I.; Tiao, G.C.; Chen, C., Estimation of time series parameters in the presence of outliers, Technometrics, 3, 193-204, (1988)
[15] Chen, C.; Lui, L., Joint estimation of model parameters and outliers in time series, Journal of the American statistical association, 88, 284-297, (1993)
[16] Choi, B., On the asymptotic distribution of Mean, autocovariance, autocorrelation, crosscovariance and impulse response estimators of a stationary multidimensional random field, Communications in statistics. theory and methods, 29, 1703-1724, (2000) · Zbl 0991.62076
[17] Criminisi, A.; Perez, P.; Toyama, K., Region filling and object removal by exemplar-based image inpainting, IEEE transactions on image processing, 13, 1200-1212, (2004)
[18] Cullis, B.R.; Glesson, A.C., Spatial analysis of field experiments—an extension to two dimensions, Biometrics, 47, 1449-1460, (1991)
[19] Francos, J.; Friedlander, B., Parameter estimation of two-dimensional moving average random fields, IEEE transaction on signal processing, 46, 2157-2165, (1998) · Zbl 0978.60053
[20] Fox, A.J., Outliers in time series, Journal of the royal statistical society series B, 34, 350-363, (1972) · Zbl 0249.62089
[21] Grondona, M.R.; Crossa, J.; Fox, P.N.; Pfeiffer, W.H., Analysis of variety yield trials using two-dimensional separable ARIMA processes, Biometrics, 52, 763-770, (1996) · Zbl 0875.62527
[22] Guo, J.; Billard, L., Some inference results for causal autoregressive processes on a plane, Journal of time series analysis, 19, 681-691, (1998) · Zbl 0921.62110
[23] Guyon, X., Parameter estimation for a stationary process on a \(d\)-dimensional lattice, Biometrika, 69, 95-105, (1982) · Zbl 0485.62107
[24] Guyon, X., Champs aléatories sur un Réseau modélisations, ()
[25] Guyon, X., Random fields on a network, () · Zbl 1358.01111
[26] Haining, R.P., The moving average model for spatial interaction, Transactions and papers, institute of british geographers (N.S.), 3, 202-225, (1978)
[27] Illig, A.; Truong-Van, B., Asymptotic results for spatial ARMA models, Communications in statistics. theory and methods, 35, 671-688, (2006) · Zbl 1093.62083
[28] Jain, A.K.; Murty, M.N.; Flynn, P.J., Data clustering: a review, ACM computing surveys, 31, 264-323, (1999)
[29] Kashyap, R.; Eom, K., Robust images techniques with an image restoration application, IEEE transactions on acoustics, speech and signal processing, 36, 1313-1325, (1988) · Zbl 0663.62105
[30] Martin, R.D., Robust estimation of autoregressive models, () · Zbl 0531.62038
[31] Martin, R.J., Some results on unilateral ARMA lattice processes, Journal of statistical planning and inference, 50, 395-411, (1996) · Zbl 0848.62051
[32] Ojeda, S.M.; Vallejos, R.O.; Lucini, M., Performance of RA estimator for bidimensional autoregressive models, Journal of statistical simulation and computation, 72, 47-62, (2002) · Zbl 1091.62536
[33] Oliveira, M., Bowen, B., Mackenna, R, Chang, Y., 2001. Fast digital image inpainting. In: Proceedings of the International Conference on Visualization, Imaging and Image Processing, VIIP 2001, Marbella, Spain.
[34] Telea, A., An image inpainting technique based on the fast marching method, Journal of graphics tools, 9, 23-34, (2004)
[35] Tjostheim, D., Statistical spatial series modelling, Advances in applied probability, 10, 130-154, (1978) · Zbl 0383.62060
[36] Tsay, R.S.; Peña, D.; Pankratz, A.E., Outliers in multivariate time series, Biometrics, 87, 789-804, (2000) · Zbl 1028.62073
[37] Vallejos, R.; Mardesic, T., A recursive algorithm to restore images based on robust estimation of NSHP autoregressive models, Journal of computational and graphical statistics, 13, 674-682, (2004)
[38] Vallejos, R.; Garcia-Donato, G., Bayesian analysis of contaminated quarter plane moving average models, Journal of statistical computation and simulation, 76, 131-147, (2006) · Zbl 1088.62043
[39] Whittle, P., On stationary processes on the plane, Biometrika, 41, 434-449, (1954) · Zbl 0058.35601
[40] Xia, Y.; Feng, D.; Zhao, R.C., Morphological multifractal estimation for image segmentation, IEEE transactions on image processing, 15, 614-623, (2006)
[41] Xie, X., A review of recent advances in surface defect detection using texture analysis techniques, Electronic letters on computer vision and image analysis, 7, 1-22, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.