zbMATH — the first resource for mathematics

Separators of arithmetically Cohen-Macaulay fat points \(\mathbb P^1\times \mathbb P^1\). (English) Zbl 1285.13019
Fix an algebrically closed field \(k\) of characteristic zero. Let \(R=k[x_0,x_1,y_0,y_1]\) be the \(\mathbb{N}^2-\)graded polynomial ring with \(\deg(x_i)=(1,0)\) for \(i=0,1\) and \(\deg(y_i)=(0,1)\) for \(i=0,1\). The ring \(R\) is the coordinate ring of \(\mathbb{P}^1 \times \mathbb{P}^1\). Consider now a set of points \(X=\{P_1, \dots, P_s\} \subset \mathbb{P}^1 \times \mathbb{P}^1\) and fix positive integers \(m_1, \dots, m_s\). In this paper the authors study some of the properties of the scheme \(Z=m_1P_1+\cdots m_sP_s\) of fat points. In particular, the main theorem of the paper shows how to compute the degree of a separator of \(P_i\) of multiplicity \(m_i\) directly from the combinatorics of the scheme \(Z\), provided \(Z\) is ACM.
Before to state such theorem we need to recall some definition.
Let \(X\) be a set of \(s\) distinct points in \(\mathbb{P}^1 \times \mathbb{P}^1\). Let \(\pi_1:\mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1\) denote the projection morphism defined by \(P \times Q \mapsto P\). Let \(\pi_2:\mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^1\) be the other projection morphism. The set \(\pi_1(X) = \{P_1,\ldots,P_a\}\) is the set of \(a \leq s\) distinct first coordinates that appear in \(X\). Similarly, \(\pi_2(X) = \{Q_1,\ldots,Q_b\}\) is the set of \(b \leq s\) distinct second coordinates. For \(i = 1,\ldots,a\), let \(L_{P_i}\) be the degree \((1,0)\) form that vanishes at all the points with first coordinate \(P_i\). Similarly, for \(j = 1,\ldots,b\), let \(L_{Q_j}\) denote the degree \((0,1)\) form that vanishes at points with second coordinate \(Q_j\).
Let \(D:=\{(x,y) ~|~ 1 \leq x \leq a, 1 \leq y \leq b\}.\) If \(P \in X\), then \(I_{P} = (L_{R_i},L_{Q_j})\) for some \((i,j) \in D.\) So, we can write each point \(P \in X\) as \(P_i \times Q_j\) for some \((i,j)\in D\).
Definition. Suppose that \(X\) is a set of distinct points in \(\mathbb{P}^1 \times \mathbb{P}^1\) and \(|\pi_1(X)| = a\) and \(|\pi_2(X)| = b\). Let \(I_{P_i \times Q_j} = (L_{R_i},L_{Q_j})\) denote the ideal associated to the point \(P_i \times Q_j \in X\). For each \((i,j) \in D\), let \(m_{ij}\) be a positive integer if \(P_i \times Q_j \in X\), otherwise, let \(m_{ij} = 0\). Then we denote by \(Z\) the subscheme of \(\mathbb{P}^1 \times \mathbb{P}^1\) defined by the saturated bihomogeneous ideal \[ Iz = \bigcap_{(i,j) \in D} I_{P_i\times Q_j}^{m_{ij}} \] We say \(Z\) is a fat point scheme or a set of fat points of \(\mathbb{P}^1 \times \mathbb{P}^1\). The integer \(m_{ij}\) is called the multiplicity of the point \(P_i \times Q_j\). The support of \(Z\), written \(\mathrm{supp}(Z)\), is the set of points \(X\).

Definition. A fat point scheme is said to be arithmetically Cohen-Macaulay (ACM for short) if the associated coordinate ring is Cohen-Macaulay.

Definition. Let \(Z = m_1P_1 + \cdots + m_iP_i + \cdots + m_sP_s\) be a set of fat points in \(\mathbb{P}^1 \times \mathbb{P}^1\). We say that \(F\) is a separator of the point \(P_i\) of multiplicity \(m_i\) if \(F \in I_{P_i}^{m_i-1} \setminus I_{P_i}^{m_i}\) and \(F \in I_{P_j}^{m_j}\) for all \(j \neq i\).
If we let \(Z' = m_1P_1 + \cdots + (m_i-1)P_i + \cdots + m_sP_s\), then a separator of the point \(P_i\) of multiplicity \(m_i\) is also an element of \(F \in I_{Z'}\setminus I_Z\). The set of minimal separators are defined in terms of the ideals \(I_{Z'}\) and \(I_Z\).

Definition. A set \(\{F_1,\ldots,F_p\}\) is a set of minimal separators of \(P_i\) of multiplicity \(m_i\) if \(I_{Z'}/I_Z = (\overline{F}_1,\ldots,\overline{F}_p)\), and there does not exist a set \(\{G_1,\ldots,G_q\}\) with \(q < p\) such that \(I_{Z'}/I_Z = (\overline{G}_1,\ldots,\overline{G}_q)\).

Definition. The degree of the minimal separators of \(P_i\) of multiplicity \(m_i\), denoted \(\deg_Z(P_i)\), is the tuple \[ \deg_Z(P_i) = (\deg F_1,\ldots,\deg F_p) \]
where \(\deg F_i \in \mathbb N^2\) and \(F_1,\ldots,F_p\) is any set of minimal separators of \(P_i\) of multiplicity \(m_i\).
For a general fat point scheme \(Z\subset \mathbb{P}^1 \times \mathbb{P}^1\), there is no known formula for \(p=|\deg(P)|\). However, if \(Z\) is ACM, then \(p\) can be computed. As a matter of fact, the main result of this paper is a formula to compute the degree of a minimal separator for each fat point in an ACM fat point scheme in \(\mathbb{P}^1 \times \mathbb{P}^1\).
Theorem Let \(Z \subset \mathbb{P}^1 \times \mathbb{P}^1\) be an ACM set of fat points with \(a=|\pi_1(\mathrm{supp}(Z))|\) and \(b=|\pi_2(\mathrm{supp}(Z))|\). Suppose \(P_i \times Q_j \in \mathrm{supp}(Z)\) is a point with multiplicity \(m_{ij}\). Set \[ a_{\ell} = \sum_{s=1}^a (m_{sj} - \ell)_+ \] and \[ b_{\ell} = \sum_{p=1}^b (m_{ip} - \ell)_+ \] for \(\ell = 0,\ldots,m_{ij}-1\), where \((m-t)_+=\max\{0, m-t\}\). Then
\[ \deg_Z(P_i \times Q_j) = \{(a_{m_{ij}-1-\ell}-1,b_{\ell}-1) ~|~ \ell = 0,\ldots,m_{ij}-1\}. \]

13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13D02 Syzygies, resolutions, complexes and commutative rings
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
Full Text: DOI Euclid arXiv
[1] S. Abrescia, L. Bazzotti and L. Marino, Conductor degree and Socle degree , Matematiche 56 (2001), 129-148. · Zbl 1172.13306
[2] L. Bazzotti, Sets of points and their conductor , J. Algebra 283 (2005), 799-820. · Zbl 1119.13011 · doi:10.1016/j.jalgebra.2004.09.031
[3] L. Bazzotti and M. Casanellas, Separators of points on algebraic surfaces , J. Pure Appl. Algebra 207 (2006), 319-326. · Zbl 1107.14038 · doi:10.1016/j.jpaa.2005.10.016
[4] A.V. Geramita, M. Kreuzer and L. Robbiano, Cayley-Bacharach schemes and their canonical modules , Trans. Amer. Math. Soc. 339 (1993), 163-189. · Zbl 0793.14002 · doi:10.2307/2154213
[5] E. Guardo, Fat point schemes on a smooth quadric , J. Pure Appl. Algebra 162 (2001), 183-208. · Zbl 1044.14025 · doi:10.1016/S0022-4049(00)00123-7
[6] E. Guardo, L. Marino and A. Van Tuyl, Separators of fat points in \(\pr^n\) , J. Algebra 324 (2010), 1492-1512. · Zbl 1216.13010 · doi:10.1016/j.jalgebra.2010.07.008
[7] E. Guardo and A. Van Tuyl, Fat points in \(\popo\) and their Hilbert functions , Canad. J. Math. 56 (2004), 716-741. · Zbl 1092.14057 · doi:10.4153/CJM-2004-033-0
[8] —, ACM sets of points in multiprojective spaces , Collect. Math. 59 (2008), 191-213. · Zbl 1146.13012 · doi:10.1007/BF03191367
[9] —, Separators of points in a multiprojective space , Manuscr. Math. 126 (2008), 99-113. · Zbl 1145.13007 · doi:10.1007/s00229-008-0165-z
[10] —, Separators of fat points in \({\mathbf P}^n \times {\mathbf P}^m\) , J. Pure Appl. Algebra 215 (2011), 1990-1998. · Zbl 1252.13011
[11] M. Kreuzer, On the canonical module of a \(0\)-dimensional scheme , Canad. J. Math. 46 (1994), 357-379. · Zbl 0826.14030 · doi:10.4153/CJM-1994-018-5
[12] L. Marino, Conductor and separating degrees for sets of points in \(\pr^r\) and in \(\pr^1 \times \pr^1\) , Boll. Unione Mat. Ital. 9 (2006), 397-421. · Zbl 1178.13007
[13] F. Orecchia, Points in generic position and conductors of curves with ordinary singularities , J. Lond. Math. Soc. 24 (1981), 85-96. · Zbl 0492.14017 · doi:10.1112/jlms/s2-24.1.85
[14] A. Sodhi, The conductor of points having the Hilbert function of a complete intersection in \(\pr^2\) , Canad. J. Math. 44 (1992), 167-179. \noindentstyle · Zbl 0774.14042 · doi:10.4153/CJM-1992-010-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.