×

zbMATH — the first resource for mathematics

A projected derivative-free algorithm for nonlinear equations with convex constraints. (English) Zbl 1285.65028
The projected spectral algorithm method for nonlinear equations, which is a derivative-free method, is used for solving nonlinear equations with convex constraints. A convergence analysis is described. Numerical studies are included to highlight the efficacy of the proposed algorithm.

MSC:
65H10 Numerical computation of solutions to systems of equations
90C06 Large-scale problems in mathematical programming
90C56 Derivative-free methods and methods using generalized derivatives
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1093/imanum/8.1.141 · Zbl 0638.65055
[2] DOI: 10.1137/S1064827599363976 · Zbl 0998.65053
[3] DOI: 10.1080/10556780500140516 · Zbl 1134.90050
[4] DOI: 10.1016/S0168-9274(02)00170-8 · Zbl 1018.65067
[5] DOI: 10.1023/B:COAP.0000018878.95983.4e · Zbl 1056.90128
[6] DOI: 10.1137/S1052623497330963 · Zbl 1047.90077
[7] DOI: 10.1145/502800.502803 · Zbl 1070.65547
[8] DOI: 10.1137/0911026 · Zbl 0708.65049
[9] DOI: 10.1137/0804017 · Zbl 0814.65048
[10] DOI: 10.1090/S0025-5718-1974-0343581-1
[11] DOI: 10.1145/62038.62043 · Zbl 0667.65040
[12] DOI: 10.1007/BF01580752 · Zbl 0825.49019
[13] DOI: 10.1007/BF01582255 · Zbl 0734.90098
[14] DOI: 10.1007/978-3-642-48320-2
[15] DOI: 10.1007/978-1-4757-3279-5_9
[16] DOI: 10.1007/PL00005460 · Zbl 0992.65070
[17] Kojima M., J. Oper. Res. Soc. Jpn. 29 pp 352– (1986)
[18] Kozakevich D. N., Comput. Appl. Math. 16 pp 215– (1997)
[19] DOI: 10.1080/10556780310001610493 · Zbl 1069.65056
[20] DOI: 10.1090/S0025-5718-06-01840-0 · Zbl 1122.65049
[21] DOI: 10.1007/BF01585096 · Zbl 0486.90015
[22] Ortega J., Iterative Solution of Nonlinear Equations in Several Variables (1970) · Zbl 0241.65046
[23] DOI: 10.1007/BF01580617 · Zbl 0808.90123
[24] DOI: 10.1023/B:JOTA.0000043997.42194.dc · Zbl 1069.65055
[25] DOI: 10.1023/B:JOTA.0000025712.43243.eb · Zbl 1140.65331
[26] DOI: 10.1137/S1052623494266365 · Zbl 0898.90119
[27] DOI: 10.1137/S1052623499356344 · Zbl 1010.90085
[28] DOI: 10.1007/s10898-008-9324-8 · Zbl 1191.90072
[29] Zhou W., J. Comput. Math. 25 pp 89– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.