Bartolucci, Francesco A class of multidimensional IRT models for testing unidimensionality and clustering items. (English) Zbl 1286.62099 Psychometrika 72, No. 2, 141-157 (2007). Summary: We illustrate a class of multidimensional item response theory models in which the items are allowed to have different discriminating power and the latent traits are represented through a vector having a discrete distribution. We also show how the hypothesis of unidimensionality may be tested against a specific bidimensional alternative by using a likelihood ratio statistic between two nested models in this class. For this aim, we also derive an asymptotically equivalent Wald test statistic which is faster to compute. Moreover, we propose a hierarchical clustering algorithm which can be used, when the dimensionality of the latent structure is completely unknown, for dividing items into groups referred to different latent traits. The approach is illustrated through a simulation study and an application to a dataset collected within the National Assessment of Educational Progress, 1996. Cited in 16 Documents MSC: 62P15 Applications of statistics to psychology Keywords:2PL model; EM algorithm; latent class model; NAEP data; Rasch model Software:MULTIRA; SAS PDF BibTeX XML Cite \textit{F. Bartolucci}, Psychometrika 72, No. 2, 141--157 (2007; Zbl 1286.62099) Full Text: DOI OpenURL References: [1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csaki (eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akademiai Kiado. · Zbl 0283.62006 [2] Andersen, E.B. (1973). Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag. [3] Bartolucci, F., & Forcina, A. (2001). Analysis of capture-recapture data with a Rasch-type model allowing for conditional dependence and multidimensionality. Biometrics, 57, 714–719. · Zbl 1209.62371 [4] Bartolucci, F., & Forcina, A. (2005). Likelihood inference on the underlying structure of IRT models. Psychometrika, 70, 31–43. · Zbl 1306.62378 [5] Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F.M. Lord & M.R. Novick (eds.), Statistical theories of mental test scores (pp. 395–379). Reading, MA: Addison-Wesley. [6] Burnham, K.P., & Anderson, D.R. (2002), Model selection and multi-model inference: A practical information-theoretic approach (2nd ed.), New York: Springer-Verlag. · Zbl 1005.62007 [7] Carstensen, C.H., and Rost, J. (2001). MULTIRA (version 1.63) [Computer software and manual]. Retrived from http://www.multira.de. [8] Christensen, K.B., & Bjorner, J. B. (2003). SAS macros for Rasch based latent variable modelling (Research Report No. 03/13). Department of Biostatistics, University of Copenhagen. [9] Christensen, K.B., Bjorner, J.B., Kreiner, S., & Petersen, J.H. (2002). Testing unidimensionality in polytomous Rasch models. Psychometrika, 67, 563–574. · Zbl 1297.62228 [10] de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183–196. [11] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–18. · Zbl 0364.62022 [12] Embretson, S.E. (1996). Item response theory models and spurious interaction effects in factorial ANOVA designs. Applied Psychological Measurement, 20, 201–212. [13] Forcina, A., & Bartolucci, F. (2004). Modelling quality of life variables with non-parametric mixtures. Environmetrics, 15, 519–528. [14] Formann, A.K. (1995). Linear logistic latent class analysis and the Rasch model. In G.H. Fischer, & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 239–255). New York: Springer-Verlag. · Zbl 0831.62090 [15] Glas, C.A.W. (1989). Contributions to estimating and testing Rasch models. Doctoral thesis. Enschede: University of Twente. [16] Glas, C.A.W., & Verhelst, N.D. (1995). Testing the Rasch model. In G.H. Fischer, & I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 69–75). New York: Springer-Verlag. · Zbl 0831.62091 [17] Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231. · Zbl 0281.62057 [18] Hardouin, J.B., & Mesbah, M. (2004). Clustering binary variables in subscales using an extended Rasch model and Akaike information criterion. Communications in Statistics. Theory and Methods, 33, 1277–1294. · Zbl 1114.62368 [19] Hoijtink, H., & Vollema, M. (2003). Contemporary extensions of the Rasch model. Quality & Quantity, 37, 263–276. [20] Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245. · Zbl 0573.62097 [21] Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items. Psychometrika, 59, 147–176. · Zbl 0825.62936 [22] Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Annals of Mathematical Statistics, 27, 887–906. · Zbl 0073.14701 [23] Kreiner, S., & Christensen, K.B. (2004). Analysis of local dependence and multidimensionality in graphical loglinear Rasch models, Communications in Statistics: Theory and Methods, 33, 1239–1276. · Zbl 1114.62342 [24] Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin. · Zbl 0182.52201 [25] Lindsay, B., Clogg, C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96–107. · Zbl 0735.62107 [26] Magidson, J., & Vermunt, J.K. (2001). Latent class factor and cluster models, bi-plots, and related graphical displays. Sociological Methodology, 31, 223–264. [27] Martin-Löf, P. (1973). Statistiska modeller. Anteckningar fr{å}n seminarier las{å}ret 1969–1970, utarbetade av Rolf Sundberg. Obetydligt ändrat nytryck, October 1973. Stockholm: Institütet för Försäkringsmatemetik och Matematisk Statistisk vid Stockholms Universitet. [28] McKinley, R.L., & Reckase, M.D. (1982). The use of the general Rasch model with multidimensional item response data. Iowa City, IA: American College Testing. [29] Molenaar, I.W. (1983). Some improved diagnostics for failure of the Rasch model. Psychometrika, 48, 49–72. [30] Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability, 4, 321–333. · Zbl 0107.36805 [31] Samejima, F. (1996). Evaluation of mathematical models for ordered polychotomous responses. Behaviormetrika, 23, 17–35. · Zbl 04530310 [32] Stegelmann, W. (1983). Expanding the Rasch model to a general model having more than one dimension. Psychometrika, 48, 259–267. · Zbl 0534.62078 [33] Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175–186. · Zbl 0494.62095 [34] Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23–30. · Zbl 0484.62115 [35] van Abswoude, A.A.H., van der Ark, L.A., & Sijtsma, K. (2004). A comparative study of test data dimensionality procedures under nonparametric IRT models. Applied Psychological Measurement, 28, 3–24. [36] van den Wollenberg, A.L. (1979). The Rasch model and time limit tests. Doctoral thesis. Nijmegen: University of Nijmegen. [37] van den Wollenberg, A.L. (1982). Two new test statistics for the Rasch model. Psychometrika, 47, 123–140. · Zbl 0489.62098 [38] Verhelst, N.D. (2001). Testing the unidimensionality assumption of the Rasch model. Methods of Psychological Research Online, 6, 231–271. [39] Vermunt, J.K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement, 25, 283–294. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.