Modified immersed finite element method for fully-coupled fluid-structure interactions. (English) Zbl 1286.74034

Summary: In this paper, we develop a “modified” immersed finite element method (mIFEM), a non-boundary-fitted numerical technique, to study fluid-structure interactions. Using this method, we can more precisely capture the solid dynamics by solving the solid governing equation instead of imposing it based on the fluid velocity field as in the original immersed finite element (IFEM). Using the IFEM may lead to severe solid mesh distortion because the solid deformation is been over-estimated, especially for high Reynolds number flows. In the mIFEM, the solid dynamics is solved using appropriate boundary conditions generated from the surrounding fluid, therefore produces more accurate and realistic coupled solutions. We show several 2-D and 3-D testing cases where the mIFEM has a noticeable advantage in handling complicated fluid-structure interactions when the solid behavior dominates the fluid flow.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
Full Text: DOI


[1] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 29, 329-349, (1981) · Zbl 0482.76039
[2] Liu, W. K.; Ma, D. C., Computer implementation aspects for fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 31, 129-148, (1982) · Zbl 0478.73061
[3] Huerta, A.; Liu, W. K., Viscous flow with large free surface motion, Comput. Methods Appl. Mech. Engrg., 69, 277-324, (1988) · Zbl 0655.76032
[4] Liu, W. K.; Chang, H.; Chen, J.; Belytschko, T., Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua, Comput. Methods Appl. Mech. Engrg., 68, 259-310, (1988) · Zbl 0626.73076
[5] Hu, H. H.; Patankar, N. A.; Zhu, M. Y., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J. Comput. Phys., 169, 427-462, (2001) · Zbl 1047.76571
[6] Zhang, L. T.; Wagner, G.; Liu, W. K., Modeling and simulation of fluid-structure interaction by meshfree and FEM, Commun. Numer. Methods Engrg., 19, 615-621, (2003) · Zbl 1098.76045
[7] Farhat, C.; Lesoinne, M.; Le Tallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Engrg., 157, 95-114, (1998) · Zbl 0951.74015
[8] Bazilevs, Y.; Hsu, M.-C.; Scott, M. A., Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249-252, 28-41, (2012) · Zbl 1348.74094
[9] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int. J. Numer. Methods Fluids, 64, 1201-1218, (2010) · Zbl 1427.76148
[10] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput. Mech., 48, 247-267, (2011) · Zbl 1398.76128
[11] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, T. E., Space-time computational techniques for the aerodynamics of flapping wings, J. Appl. Mech., 79, 010903, (2012)
[12] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F. M.; Vargas, A.; von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852, (2008) · Zbl 1388.76263
[13] Wang, X.; Zhang, L. T., Numerical method for fluid-structure interactions with sharp interfaces: formulation and convergence tests, Comput. Mech., 45, 4, 321-334, (2010)
[14] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252, (1977) · Zbl 0403.76100
[15] McCracken, M. F.; Peskin, C. S., A vortex method for blood flow through heart valves, J. Comput. Phys., 35, 183-205, (1980) · Zbl 0428.92010
[16] McQueen, D. M.; Peskin, C. S., Computer-assisted design of pivoting-disc prosthetic mitral valves, J. Comput. Phys., 86, 126-135, (1983)
[17] Peskin, C. S.; McQueen, D. M., A three-dimensional computational method for blood flow in the heart. I. immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 2, 372-405, (1989) · Zbl 0668.76159
[18] Peskin, C. S.; McQueen, D. M., Cardiac fluid dynamics. critical reviews in biomedical engineering, SIAM J. Sci. Stat. Comput., 20, 6, 451-459, (1992)
[19] Peskin, C. S.; McQueen, D. M., Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets, Am. J. Physiol., 266, 1, H319-H328, (1994)
[20] Peskin, C. S.; McQueen, D. M., Case studies in mathematical modeling - ecology, physiology, and cell biology, (1996), Prentice-Hall
[21] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 4, 1044-1091, (1994) · Zbl 0811.65083
[22] LeVeque, R. J.; Li, Z., Immersed interface methods for Stokes flow with elastic boundries or surface tension, SIAM J. Sci. Comput., 18, 3, 709-735, (1997) · Zbl 0879.76061
[23] Fogelson, A. L.; Keener, J. P., Immersed interface method for Neumann and related problems in two and three dimensions, SIAM J. Sci. Comput., 22, 5, 1630-1654, (2000) · Zbl 0982.65112
[24] Lee, L.; LeVeque, R. J., An immersed interface method for incompressible Navier-Stokes equations, SIAM J. Sci. Comput., 25, 3, 832-856, (2003) · Zbl 1163.65322
[25] Li, Z.; Lai, M. C., The immersed interface methods for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171, 822-842, (2001) · Zbl 1065.76568
[26] Wiegmann, A.; Bube, K. P., The immersed interface method for nonlinear differential equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 35, 1, 177-200, (1998) · Zbl 0913.65076
[27] Wiegmann, A.; Bube, K. P., The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J. Numer. Anal., 37, 3, 827-862, (2000) · Zbl 0948.65107
[28] Wang, X.; Liu, W. K., Extended immersed boundary method using FEM and RKPM, Comput. Methods Appl. Mech. Engrg., 193, 1305-1321, (2004) · Zbl 1060.74676
[29] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 491-501, (2003)
[30] Boffi, D.; Gastaldi, L.; Heltai, L., On the CFL condition for the finite element immersed boundary method, Comput. Struct., 85, 775-783, (2007)
[31] Zhang, L. T.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Engrg., 193, 2051-2067, (2004) · Zbl 1067.76576
[32] W.K. Liu, Y. Liu, L.T. Zhang, X. Wang, A. Gerstenberger, D. Farrell. Immersed finite element method and applications to biological systems, in: Finite Element Methods: 1970’s and Beyond, International Center for Numerical Methods and, Engineering, 2004.
[33] Liu, Y.; Liu, W. K., Rheology of red blood cell aggregation in capillary by computer simulation, J. Comput. Phys., 220, 139-154, (2006) · Zbl 1102.92010
[34] Gay, M.; Zhang, L. T.; Liu, W. K., Stent modeling using immersed finite element method, Comput. Methods Appl. Mech. Engrg., 195, 4358-4370, (2006) · Zbl 1175.74081
[35] Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L. T.; Wang, S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.; Hong, J.; Chen, X.; Hsu, H., Immersed finite element method and its applications to biological systems, Comput. Methods Appl. Mech. Engrg., 195, 1722-1749, (2006) · Zbl 1178.76232
[36] Zhang, L. T.; Gay, M., Immersed finite element method for fluid-structuure interactions, J. Fluids Struct., 23, 839-857, (2007)
[37] Zhang, L. T.; Gay, M., Imposing rigidity constraints on immersed objects in unsteady fluid flows, Comput. Mech., 42, 357-370, (2008) · Zbl 1194.76146
[38] Wang, S. X.; Zhang, L. T.; Liu, W. K., Finite element formulations for immersed methods: explicit and implicit approaches, J. Comput. Phys., 228, 7, 2535-2551, (2009) · Zbl 1158.74049
[39] Wang, X.; Wang, Chu; Zhang, L. T., Semi-implicit formulation of the immersed finite element method, Comput. Mech., 49, 421-430, (2012) · Zbl 1398.74098
[40] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible multi-fluid flows, J. Comput. Phys., 100, 25-37, (1992) · Zbl 0758.76047
[41] Torres, D. J.; Brackbill, J. U., The point-set method: front-tracking without connectivity, J. Comput. Phys., 165, 620-644, (2000) · Zbl 0998.76070
[42] Gottlieb, S.; Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comput., 67, 221, 73-85, (1998) · Zbl 0897.65058
[43] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 228, 4012-4037, (2009) · Zbl 1171.76046
[44] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear finite elements for continua and structures, (2000), John Wiley and Sons, Inc. New York · Zbl 0959.74001
[45] Hughes, T. J., The finite element method: linear static and dynamic finite element analysis, (2000), Dover Publications Inc. · Zbl 1191.74002
[46] Zhao, H.; Freund, B. J.; Moser, D. B., A fixed-mesh method for incompressible flow-structure systems with finite solid deformations, J. Comput. Phys., 227, 3114-3140, (2008) · Zbl 1329.74313
[47] Wang, X.; Zhang, L. T., Interpolation functions in the immersed boundary and finite element methods, Comput. Mech., 45, 4, 321-334, (2001) · Zbl 1362.74035
[48] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 2, 357-397, (2004) · Zbl 1036.65045
[49] Blevins, R. D., Flow-induced vibration, (1990), Van Nostrand Reinhold New York
[50] Anderson, J. D., Fundamentals of aerodynamics, (2010), McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.