×

The existence of best proximity points for multivalued non-self-mappings. (English) Zbl 1287.54036

In this paper, the authors present sufficient conditions which ensure the existence of best proximity points for multivalued non-self-mappings. Let \(A, B\) be nonempty subsets of a metric space \((X, d)\) and \(T : A \to 2^B\) be a multivalued non-self-mapping. A best proximity point for \(T\) is a point \(x^{*} \in A\) which satisfies \(\inf \{d(x^* , y) : y \in Tx^*\} = \operatorname{dist}(A, B)\). For contraction multivalued non-self-mappings in metric spaces, as well as for nonexpansive multivalued non-self-mappings in Banach spaces having an appropriate geometric property, the authors prove sufficient conditions which ensure the existence of best proximity points.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
54E40 Special maps on metric spaces
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbas, M., Nazir, T., Romaguera, S.: Fixed point results for generalized cyclic contraction mappings in partial metric spaces. RACSAM (2012). doi: 10.1007/s13398-011-0051-5 · Zbl 1256.54064
[2] Abkar A., Gabeleh M.: Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. (2012). doi: 10.1007/s11590-011-0379-y · Zbl 1281.90068
[3] Abkar A., Gabeleh M.: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261–7268 (2011) · Zbl 1263.47065 · doi:10.1016/j.na.2011.07.043
[4] Abkar A., Gabeleh M.: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298–305 (2012) · Zbl 1262.90134 · doi:10.1007/s10957-011-9966-4
[5] Al-Thagafi M.A., Shahzad N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665–3671 (2009) · Zbl 1197.47067 · doi:10.1016/j.na.2008.07.022
[6] Derafshpour M., Rezapour S., Shahzad N.: Best proximity points of cyclic $${\(\backslash\)varphi}$$ -contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193–202 (2011) · Zbl 1227.54046
[7] Di Bari C., Suzuki T., Vetro C.: Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Anal. 69, 3790–3794 (2008) · Zbl 1169.54021 · doi:10.1016/j.na.2007.10.014
[8] Espinola R.: A new approach to relatively nonexpansive mappings. Proc. Amer. Math. Soc. 136, 1987–1996 (2008) · Zbl 1141.47035 · doi:10.1090/S0002-9939-08-09323-4
[9] Fan K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z 122, 234–240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[10] Nadler S.B. Jr: Multivalued contraction mappinsg. Pac. J. Math. 30, 475–488 (1969) · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[11] Sankar Raj V.: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804–4808 (2011) · Zbl 1228.54046 · doi:10.1016/j.na.2011.04.052
[12] Suzuki T., Kikkawa M., Vetro C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918–2926 (2009) · Zbl 1178.54029 · doi:10.1016/j.na.2009.01.173
[13] Wlodarczyk K., Plebaniak A., Banach A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 70, 3332–3342 (2009) · Zbl 1182.54024 · doi:10.1016/j.na.2008.04.037
[14] Wlodarczyk K., Plebaniak A., Banach A.: Erratum to: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal. 71, 3583–3586 (2009) · Zbl 1171.54311
[15] Wlodarczyk K., Plebaniak R., Obczynski C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794–805 (2010) · Zbl 1185.54020 · doi:10.1016/j.na.2009.07.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.