zbMATH — the first resource for mathematics

A SBS-BD based solver for domain decomposition in BE methods. (English) Zbl 1287.65131
Summary: In boundary element methods (BEM), subregioning may be needed either to model complex solids (with cracks, stiffeners, layers, inclusions, etc.) or simply to decompose a problem by computational reasons (e.g. for parallelization). Since the development of the first BEM codes, many attempts have been made to efficiently devise generic boundary-element subregioning techniques. Crucial points are how to profit from the sparsity of the global matrix, and how to deal with traction discontinuities. In this work, the most fundamental steps for efficiently devising reliable and efficient subregioning algorithms are discussed. The subregion-by-subregion (SBS) algorithm and the preconditioning of the embedded Krylov solver are addressed. Besides the BiCG solver, the BiCGSTAB(\(l\)) is newly incorporated into the BE-SBS code. The 3D microstructural analysis of carbon-nanotube-reinforced composites (CNT composites) is considered to verify the performance of the algorithm. Numerical results showing the efficiency of the preconditioned solvers studied are presented.

65N38 Boundary element methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
Full Text: DOI
[1] Mandel, J., Balancing domain decomposition, Commun Appl Numer Methods Eng, 9, 233-241, (1993) · Zbl 0796.65126
[2] Tallec, P. L., Domain-decomposition methods in computational mechanics, Comput Mech Adv, 1, 2, 121-220, (1994) · Zbl 0802.73079
[3] Sistek, J.; Sousedik, B.; Burda, P.; Mandel, J.; Novotny, J., Application of the parallel BDDC preconditioner to the Stokes flow, Comput Fluids, 46, 429-435, (2011) · Zbl 1432.76087
[4] Parret-Fréaud, A.; Rey, C.; Gosselet, P.; Feyel, F., Fast estimation of discretization error for FE problems solved by domain decomposition, Comput Methods Appl Mech Eng, 199, 3315-3323, (2010) · Zbl 1225.74103
[5] Farhat, C.; Roux, F. X., An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems, SIAM J Sci Stat Comput, 13, 379-396, (1992) · Zbl 0746.65086
[6] Dostal, Z.; Horak, D.; Vlach, O., FETI-based algorithms for modelling of fibrous composite materials with debonding, Math Comput Simul, 76, 57-64, (2007) · Zbl 1132.74044
[7] Farhat, C.; Mandel, J.; Roux, F. X., Optimal convergence properties of the FETI domain decomposition method, Comput Methods Appl Mech Eng, 115, 365-385, (1994)
[8] Kane, J. H., Boundary element analysis in engineering continuum mechanics, (1994), Prentice-Hall Englewood Cliffs, NJ
[9] Anderson, E; Bai, Z.; Bishof, C.; Blackford, LS; Demmel, J; Dongarra, J, LAPACK users guide, (1999), SIAM Philadelphia
[10] Blackford, L. S.; Choi, J.; Cleary, A.; d’Azevedo, E.; Demmel, J.; Dhillon, I., Scalapack users guide, (1997), SIAM Philadelphia · Zbl 0886.65022
[11] Duff, I. S.; Koster, J., The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J Matrix Anal Appl, 20, 4, 889-901, (1999) · Zbl 0947.65048
[12] Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener Comput Syst, 20, 475-487, (2004)
[13] Maurer, D.; Wieners, C., A parallel block LU decomposition method for distributed finite element matrices, Parallel Comput, 37, 742-758, (2011)
[14] Gupta, A., A shared- and distributed-memory parallel generalsparse direct solver, AAECC, 18, 263-277, (2007) · Zbl 1122.65030
[15] Wilkinson, J. H., Rounding errors in algebraic processes, (1963), Prentice-Hall · Zbl 1041.65502
[16] Saad, Y., Iterative methods for sparse linear systems, (2003), Society for Industrial and Applied Mathematics (SIAM) Philadelphia · Zbl 1002.65042
[17] van der Vorst, H. A., Iterative Krylov methods for large linear systems, (2003), Cambridge University Press · Zbl 1023.65027
[18] Hughes, T. J.R.; Levit, I.; Winget, L., An element-by-element solution algorithm for problems of structural and solid mechanics, Comput Methods Appl Mech Eng, 36, 2, 241-254, (1983) · Zbl 0487.73083
[19] Elias, R. N.; Martins, M. A.D.; Coutinho, A. L.G. A., Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG formulation, Comput Mech, 38, 365-381, (2006) · Zbl 1176.76064
[20] Liu, Y.; Nishimura, N.; Otani, Y., Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method, Comput Mater Sci, 34, 173-187, (2005)
[21] Popov, V.; Power, H.; Walker, S. P., Numerical comparison between two possible multipole alternatives for the BEM solution of 3D elasticity problems based upon Taylor series expansions, Eng Anal Bound Elem, 27, 521-531, (2003) · Zbl 1047.74546
[22] Masters, N.; Ye, W., Fast BEM solution for coupled 3D electrostatic and linear elastic problems, Eng Anal Boundary Elem, 28, 1175-1186, (2004) · Zbl 1130.74469
[23] Lin, P. T.; Shadid, J. N., Towards large-scale multi-socket, multicore parallel simulations: performance of an MPI-only semiconductor device simulator, J Comput Phys, 229, 6804-6818, (2010) · Zbl 1198.82067
[24] Giraud, L.; Haidar, A.; Pralet, S., Using multiple levels of parallelism to enhance the performance of domain decomposition solvers, Parallel Comput, 36, 285-296, (2010) · Zbl 1204.68262
[25] Sleijpen, G. L.G.; Fokkema, D. R., BICGSTAB(L) for linear equations involving unsymmetric matrices with complex spectrum, Electron Trans Numer Anal, 1, 11-32, (1993) · Zbl 0820.65016
[26] Zhang, S.-L., Gpbi-CG: generalized product-type methods based on bi-CG for solving nonsymmetric linear systems, SIAM J Sci Comput, 18, 537-551, (1997) · Zbl 0872.65023
[27] Chen, K., Matrix preconditioning techniques and applications, (2005), Cambridge University Press Cambridge, UK · Zbl 1079.65057
[28] Saad, Y.; van der Vorst, H. A., Iterative solution of linear systems in the 20th century, J Comput Appl Math, 123, 1-33, (2000) · Zbl 0965.65051
[29] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Star Comput, 7, 856-869, (1986) · Zbl 0599.65018
[30] Fletcher, R., Conjugate gradient methods for indefinite systems. lecture notes in mathematics 506, 73-89, (1976), Spriger-Verlag Berlin
[31] Freund, R. W.; Nachtigal, N. M., QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer Math, 60, 315-339, (1991) · Zbl 0754.65034
[32] Chen, K., On a class of preconditioning methods for dense linear systems from boundary elements, SIAM J Sci Comput, 20, 684-698, (1998) · Zbl 0924.65037
[33] Mittal, R. C.; Al-Kurdi, A. H., An efficient method for constructing an ILU preconditioner for solving large sparse nonsymmetric linear systems by the GMRES method, Comput Math Appl, 45, 1757-1772, (2003) · Zbl 1050.65050
[34] Araujo, F. C.; Silva, K. I.; Telles, J. C.F., Generic domain decomposition and iterative solvers for 3D BEM problems, Int J Num Methods Eng, 68, 448-472, (2006) · Zbl 1191.74052
[35] Araujo, F. C.; Gray, L. J., Evaluation of effective material parameters of CNT-reinforced composites via 3D BEM, Comp Mod Eng Sci, 24, 2, 103-121, (2008)
[36] Araújo, F. C.; Gray, L. J., Analysis of thin-walled structural elements via 3D standard BEM with generic substructuring, Comp Mech, 41, 633-645, (2008) · Zbl 1162.74482
[37] Araújo, F. C.; Dors, C.; Martins, C. J.; Mansur, W. J., New developments on BE/BE multi-zone algorithms based on Krylov solvers-applications to 3D frequency-dependent problems, J Braz Soc Mech Sci Eng, 26, 231-248, (2004)
[38] Kane, J. H., Boundary element analysis on vector and parallel computers, Comput Syst Eng, 5, 239-252, (1994)
[39] Kamiya, N.; lwase, H.; Kita, E., Parallel implementation of boundary element method with domain decomposition, Eng Anal Bound Elem, 18, 209-216, (1996)
[40] Kamiya, N.; lwase, H.; Kita, E., Performance evaluation of parallel boundary element analysis by domain decomposition method, Eng Anal Bound Elem, 18, 217-222, (1996)
[41] Lu, X.; Wu, W.-L., A new subregion boundary element technique based on the domain decomposition method, Eng Anal Bound Elem, 29, 944-952, (2005) · Zbl 1182.74225
[42] Araujo, F. C.; d’Azevedo, E. F.; Gray, L. J., Constructing efficient substructure-based preconditioners for BEM systems of equations, Eng Anal Bound Elem, 35, 517-526, (2011) · Zbl 1259.74040
[43] Chen, X. L.; Liu, Y. J., Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Comput Mat Sci, 29, 1-11, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.