×

zbMATH — the first resource for mathematics

Reduced-order unsteady aerodynamic models at low Reynolds numbers. (English) Zbl 1287.76078
Summary: In this paper we develop reduced-order models for the unsteady lift on a pitching and plunging aerofoil over a range of angles of attack. In particular, we analyse the pitching and plunging dynamics for two cases: a two-dimensional flat plate at \(Re= 100\) using high-fidelity direct numerical simulations and a three-dimensional NACA 0006 aerofoil at \(Re=65 000\) using wind-tunnel measurements. Models are obtained at various angles of attack and they are verified against measurements using frequency response plots and large-amplitude manoeuvres. These models provide a low-dimensional balanced representation of the relevant unsteady fluid dynamics. In simulations, flow structures are visualized using finite-time Lyapunov exponents. A number of phenomenological trends are observed, both in the data and in the models. As the base angle of attack increases, the boundary layer begins to separate, resulting in a decreased quasi-steady lift coefficient slope and a delayed relaxation to steady state at low frequencies. This extends the low-frequency range of motions that excite unsteady effects, meaning that the quasi-steady approximation is not valid until lower frequencies than are predicted by Theodorsen’s classical inviscid model. In addition, at small angles of attack, the lift coefficient rises to the steady-state value after a step in angle, while at larger angles of attack, the lift coefficient relaxes down to the steady-state after an initially high lift state. Flow visualization indicates that this coincides with the formation and convection of vortices at the leading edge and trailing edge. As the angle of attack approaches the critical angle for vortex shedding, the poles and zeros of the model approach the imaginary axis in the complex plane, and some zeros cross into the right half plane. This has significant implications for active flow control, which are discussed. These trends are observed in both simulations and wind-tunnel data.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76D55 Flow control and optimization for incompressible viscous fluids
76-05 Experimental work for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.3270044 · Zbl 1311.76102 · doi:10.1063/1.3270044
[2] DOI: 10.1063/1.2840197 · Zbl 1182.76341 · doi:10.1063/1.2840197
[3] DOI: 10.1017/S0022112006003648 · Zbl 1111.76025 · doi:10.1017/S0022112006003648
[4] DOI: 10.1006/jfls.1993.1012 · doi:10.1006/jfls.1993.1012
[5] DOI: 10.1038/35089071 · doi:10.1038/35089071
[6] J. Fluid Mech. 589 pp 125– (2007)
[7] DOI: 10.2514/1.439 · doi:10.2514/1.439
[8] DOI: 10.1002/rnc.706 · Zbl 1007.93022 · doi:10.1002/rnc.706
[9] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[10] Unsteady Aerodynamic Modeling and Active Aeroelastic Control. SUDARR 504 (1977)
[11] DOI: 10.1017/S0022112008005314 · Zbl 1157.76321 · doi:10.1017/S0022112008005314
[12] DOI: 10.1016/S0167-6911(00)00076-1 · Zbl 0980.93025 · doi:10.1016/S0167-6911(00)00076-1
[13] A Course in Robust Control Theory: A Convex Approach (2000)
[14] DOI: 10.1016/j.jcp.2007.03.005 · Zbl 1343.76027 · doi:10.1016/j.jcp.2007.03.005
[15] DOI: 10.1017/S0022112097008392 · Zbl 0922.76023 · doi:10.1017/S0022112097008392
[16] Am. Zool. 24 pp 121– (1984) · doi:10.1093/icb/24.1.121
[17] DOI: 10.1017/S0022112006001200 · Zbl 1100.76056 · doi:10.1017/S0022112006001200
[18] DOI: 10.1017/S0022112009992655 · Zbl 1189.76163 · doi:10.1017/S0022112009992655
[19] DOI: 10.1016/j.cma.2007.08.014 · Zbl 1158.76395 · doi:10.1016/j.cma.2007.08.014
[20] DOI: 10.1016/j.physd.2005.10.007 · Zbl 1161.76487 · doi:10.1016/j.physd.2005.10.007
[21] J. Fluid Mech. 603 pp 331– (2008)
[22] J. Fluid Mech. 593 pp 315– (2007)
[23] DOI: 10.1016/j.jfluidstructs.2012.10.005 · doi:10.1016/j.jfluidstructs.2012.10.005
[24] DOI: 10.1242/jeb.00663 · doi:10.1242/jeb.00663
[25] DOI: 10.1007/BF01646553 · Zbl 0223.76041 · doi:10.1007/BF01646553
[26] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[27] DOI: 10.1017/S0022112004008821 · Zbl 1163.76329 · doi:10.1017/S0022112004008821
[28] DOI: 10.2514/1.4922 · doi:10.2514/1.4922
[29] DOI: 10.1242/jeb.015883 · doi:10.1242/jeb.015883
[30] DOI: 10.1017/S0022112010002879 · Zbl 1205.76095 · doi:10.1017/S0022112010002879
[31] DOI: 10.1007/s00162-010-0184-8 · Zbl 1272.76103 · doi:10.1007/s00162-010-0184-8
[32] System Identification: Theory for the User (1999)
[33] DOI: 10.1146/annurev.fluid.39.050905.110153 · doi:10.1146/annurev.fluid.39.050905.110153
[34] DOI: 10.2514/1.J050954 · doi:10.2514/1.J050954
[35] J. Aeronaut. Sci. 5 pp 379– (1938)
[36] DOI: 10.2514/1.23096 · doi:10.2514/1.23096
[37] DOI: 10.2514/3.20031 · Zbl 0589.93008 · doi:10.2514/3.20031
[38] DOI: 10.1098/rsta.2001.0930 · doi:10.1098/rsta.2001.0930
[39] J. Sound Vib. 330 pp 1567– (2010)
[40] DOI: 10.1088/0953-8984/21/20/204105 · doi:10.1088/0953-8984/21/20/204105
[41] J. Fluid Mech. 611 pp 1– (2008)
[42] J. Fluid Mech. 512 pp 257– (2004)
[43] DOI: 10.1146/annurev.fluid.36.050802.121940 · Zbl 1117.76080 · doi:10.1146/annurev.fluid.36.050802.121940
[44] DOI: 10.1063/1.1477449 · Zbl 1185.76161 · doi:10.1063/1.1477449
[45] DOI: 10.1017/S0022112008003583 · Zbl 1175.76012 · doi:10.1017/S0022112008003583
[46] DOI: 10.1126/science.1104682 · doi:10.1126/science.1104682
[47] DOI: 10.1002/zamm.19250050103 · JFM 51.0675.05 · doi:10.1002/zamm.19250050103
[48] DOI: 10.1017/jfm.2011.286 · Zbl 1241.76027 · doi:10.1017/jfm.2011.286
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.