×

zbMATH — the first resource for mathematics

Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls. (English) Zbl 1287.76201
Summary: The interaction of a turbulent eddy with a semi-infinite poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The scattering problem is solved using the Wiener-Hopf technique to identify the scaling dependence of the resulting aerodynamic noise on plate and flow properties, including the dependence on a characteristic flow velocity \(U\). Special attention is paid to the limiting cases of porous-rigid and impermeable-elastic plate conditions. Asymptotic analysis of these special cases reveals parametric limits where the far-field acoustic power scales like \(U^{6}\) for a porous edge, and a new finite range of \(U^{7}\) behaviour is found for an elastic edge, to be compared with the well-known \(U^{5}\) dependence for a rigid impermeable edge. Further numerical results attempt to address how trailing-edge noise may be mitigated by porosity and flexibility and seek to deepen the understanding of how owls hunt in acoustic stealth.

MSC:
76Q05 Hydro- and aero-acoustics
76F10 Shear flows and turbulence
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1098/rspa.1975.0206 · Zbl 0328.76064
[2] DOI: 10.1112/S0025579300009116 · Zbl 0365.76078
[3] Electron-Stream Interaction with Plasmas (1964)
[4] DOI: 10.1098/rspa.1955.0191 · Zbl 0067.43104
[5] J. Expl Biol. 198 pp 1029– (1995)
[6] DOI: 10.1098/rspa.1973.0128 · Zbl 0314.76062
[7] J. Math. Mech. 14 pp 41– (1965)
[8] DOI: 10.1121/1.387522 · Zbl 0496.76071
[9] DOI: 10.1017/S0022112070002690 · Zbl 0218.76088
[10] DOI: 10.1016/0022-247X(62)90053-7 · Zbl 0107.31801
[11] Galeev, Basic Plasma Physics vol. 1 (1983)
[12] DOI: 10.1016/S0165-2125(00)00063-9 · Zbl 1074.78507
[13] J. Math. Mech. 17 pp 577– (1968)
[14] An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[15] Hubbard, Aerodynamic Theory: A General Review of Progress. Volume 1: Noise Sources (1991)
[16] DOI: 10.1016/j.compscitech.2004.06.011
[17] DOI: 10.1016/0022-460X(72)90841-3
[18] DOI: 10.1017/jfm.2012.254 · Zbl 1275.76184
[19] DOI: 10.1016/S0022-460X(75)80105-2 · Zbl 0318.76055
[20] DOI: 10.1016/j.apacoust.2012.11.003
[21] North American Owls: Biology and Natural History (2002)
[22] DOI: 10.2307/1369270
[23] DOI: 10.1017/S002211209000101X
[24] DOI: 10.1098/rspa.1976.0096 · Zbl 0346.76063
[25] DOI: 10.1098/rspa.1996.0123 · Zbl 0876.76071
[26] DOI: 10.1093/qjmam/54.1.139 · Zbl 0988.76090
[27] Sound Absorbing Materials (1949)
[28] J. Fluid Mech. 613 pp 275– (2008)
[29] Acoustics of Fluid-Structure Interactions (1998) · Zbl 0921.76002
[30] DOI: 10.1098/rspa.1993.0120 · Zbl 0789.76076
[31] Perturbation Methods in Fluid Mechanics (1975)
[32] DOI: 10.1098/rspa.1992.0023 · Zbl 0775.76161
[33] Theory of Plates and Shells (1940) · JFM 66.1049.02
[34] DOI: 10.1121/1.401273
[35] Sexual Size Dimorphism in Hawks and Owls of North America (No. 20) (1976)
[36] DOI: 10.1016/0889-9746(91)80010-B
[37] DOI: 10.2514/1.J050703
[38] DOI: 10.1098/rspa.1984.0100 · Zbl 0563.76077
[39] DOI: 10.1016/j.jsv.2011.02.005
[40] DOI: 10.1098/rspa.1979.0048 · Zbl 0415.76060
[41] DOI: 10.1016/j.jsv.2004.10.054
[42] DOI: 10.1098/rspa.1979.0014 · Zbl 0422.76036
[43] DOI: 10.1007/s10665-007-9193-z · Zbl 1198.76136
[44] DOI: 10.1016/0022-460X(78)90391-7 · Zbl 0399.76076
[45] The Theory of Sound vol. 2 (1945)
[46] DOI: 10.2514/1.11101
[47] DOI: 10.1017/S0022112004008808 · Zbl 1065.74024
[48] Wilson Bull. 103 pp 497– (1991)
[49] DOI: 10.2514/1.38888
[50] Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations (1988)
[51] DOI: 10.1038/233409a0
[52] DOI: 10.1016/S0022-460X(82)80072-2
[53] J. R. Aero. Soc. 38 pp 837– (1934)
[54] The Birds of Canada (1986)
[55] DOI: 10.2514/3.7675 · Zbl 0429.76009
[56] DOI: 10.1007/s00348-009-0739-x
[57] DOI: 10.2307/4087606
[58] DOI: 10.1017/S0022112070000368 · Zbl 0201.29001
[59] DOI: 10.1017/S0022112072001338 · Zbl 0237.76059
[60] DOI: 10.1098/rspa.1952.0060 · Zbl 0049.25905
[61] DOI: 10.2307/1366002
[62] DOI: 10.1098/rspa.1990.0019 · Zbl 0695.76036
[63] Great Gray Owl: Strix Nebulosa (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.