×

Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. (English) Zbl 1290.26010

Summary: We report on recent progress in the study of nonlinear diffusion equations involving nonlocal, long-range diffusion effects. Our main concern is the so-called fractional porous medium equation, \(\partial_t u +(-\Delta)^{s}(u^m)=0\), and some of its generalizations. Contrary to usual porous medium flows, the fractional version has infinite speed of propagation for all exponents \(0 < s < 1\) and \(m > 0\); on the other hand, it also generates an \(L^1\)-contraction semigroup which depends continuously on the exponent of fractional differentiation and the exponent of the nonlinearity. { } After establishing the general existence and uniqueness theory, the main properties are described: positivity, regularity, continuous dependence, a priori estimates, Schwarz symmetrization, among others. Self-similar solutions are constructed (fractional Barenblatt solutions) and they explain the asymptotic behaviour of a large class of solutions. In the fast diffusion range we study extinction in finite time and we find suitable special solutions. We discuss KPP type propagation. We also examine some related equations that extend the model and briefly comment on current work.

MSC:

26A33 Fractional derivatives and integrals
35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
35S10 Initial value problems for PDEs with pseudodifferential operators
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] N. Alibaud, Continuous dependence estimates for nonlinear fractional convection-diffusion equations,, SIAM J. Math. Anal., 44, 603 (2012) · Zbl 1387.35601
[2] N. Alibaud, Optimal continuous dependence estimates for fractional degenerate parabolic equations,, <a href= · Zbl 1304.35742
[3] L. Ambrosio, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Annales IHP, 28, 217 (2011) · Zbl 1233.49022
[4] L. Ambrosio, A gradient flow approach to an evolution problem arising in superconductivity,, Comm. Pure Appl. Math., 61, 1495 (2008) · Zbl 1171.35005
[5] F. Andreu, <em>Nonlocal Diffusion Problems</em>,, AMS Mathematical Surveys and Monographs (2010) · Zbl 1214.45002
[6] D. Applebaum, <em>Lévy Processes and Stochastic Calculus</em>,, Second edition (2009) · Zbl 1200.60001
[7] D. G. Aronson, The porous medium equation,, in Nonlinear Diffusion Problems (Montecatini Terme, 1224, 1 (1985) · Zbl 0626.76097
[8] D. G. Aronson, The initial trace of a solution of the porous medium equation,, Trans. Amer. Math. Soc., 280, 351 (1983) · Zbl 0556.76084
[9] D. G. Aronson, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30, 33 (1978) · Zbl 0407.92014
[10] I. Athanasopoulos, Optimal regularity of lower dimensional obstacle problems,, Zap. Nauchn. Se. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310, 49 (2004) · Zbl 1108.35038
[11] I. Athanasopoulos, Continuity of the temperature in boundary heat control problem,, Advances in Mathematics, 224, 293 (2010) · Zbl 1190.35125
[12] T. Aubin, Problemes isoprimtriques et espaces de Sobolev,, J. Diff. Geom., 11, 573 (1976) · Zbl 0371.46011
[13] C. Bandle, <em>Isoperimetric Inequalities and Applications</em>,, Monographs and Studies in Mathematics (1980) · Zbl 0436.35063
[14] G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium,, (in Russian) Prikl. Mat. Mekh., 16, 67 (1952)
[15] G. I. Barenblatt, <em>Scaling, Self-Similarity, and Intermediate Asymptotics</em>,, Cambridge Texts in Applied Mathematics (1996) · Zbl 0907.76002
[16] J. Bertoin, <em>Lévy Processes</em>,, Cambridge Tracts in Mathematics (1996) · Zbl 0861.60003
[17] A. L. Bertozzi, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels,, Nonlinearity, 22, 683 (2009) · Zbl 1194.35053
[18] A. Bertozzi, Aggregation via Newtonian Potential and Aggregation Patches,, M3AS, 22 (2012)
[19] P. Biler, Barenblatt profiles for a nonlocal porous medium equation,, Comptes Rendus Mathematique, 349, 641 (2011) · Zbl 1221.35209
[20] P. Biler, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions,, preprint <a href= (2013)
[21] P. Biler, Nonlinear diffusion of dislocation density and self-similar solutions,, Comm. Math. Phys., 294, 145 (2010) · Zbl 1207.82049
[22] R. M. Blumenthal, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95, 263 (1960) · Zbl 0107.12401
[23] M. Bologna, Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions,, Physical Review E, 62 (2000)
[24] M. Bonforte, Global positivity estimates and Harnack inequalities for the fast diffusion equation,, J. Funct. Anal., 240, 399 (2006) · Zbl 1107.35063
[25] M. Bonforte, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations,, Advances in Math., 223, 529 (2010) · Zbl 1184.35083
[26] M. Bonforte, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities,, Proceedings Natl. Acad. Sci. USA, 107, 16459 (2010) · Zbl 1256.35026
[27] M. Bonforte, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations,, Advances in Math., 250, 242 (2014) · Zbl 1288.35127
[28] M. Bonforte, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains,, preprint <a href= · Zbl 1334.35382
[29] M. Bonforte, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Part II,, in preparation. · Zbl 1334.35382
[30] J. Bourgain, Limiting embedding theorems for \(W^{s,p}\) when \(s\to 1\) and applications,, J. Anal. Math., 87, 77 (2002) · Zbl 1029.46030
[31] X. Cabré, Positive solutions of nonlinear problems involving the square root of the Laplacian,, Adv. in Math., 224, 2052 (2010) · Zbl 1198.35286
[32] X. Cabré, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347, 1361 (2009) · Zbl 1182.35072
[33] X. Cabré, The influence of fractional diffusion in Fisher-KPP equations,, Comm. Math. Phys., 320, 679 (2013) · Zbl 1307.35310
[34] L. A. Caffarelli, Further regularity for the Signorini problem,, Comm. Partial Differential Equations, 4, 1067 (1979) · Zbl 0427.35019
[35] L. Caffarelli, Regularity theory for nonlinear integral operators,, J. Amer. Math. Soc., 24, 849 (2011) · Zbl 1223.35098
[36] L. A. Caffarelli, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian,, Invent. Math., 171, 425 (2008) · Zbl 1148.35097
[37] L. A. Caffarelli, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32, 1245 (2007) · Zbl 1143.26002
[38] L. A. Caffarelli, Regularity of solutions of the fractional porous medium flow,, J. Eur. Math. Soc. (JEMS), 15, 1701 (2013) · Zbl 1292.35312
[39] L. A. Caffarelli, Nonlinear porous medium flow with fractional potential pressure,, Arch. Rational Mech. Anal., 202, 537 (2011) · Zbl 1264.76105
[40] L. A. Caffarelli, Asymptotic behaviour of a porous medium equation with fractional diffusion,, Discrete Cont. Dyn. Systems-A, 29, 1393 (2011) · Zbl 1211.35043
[41] L. A. Caffarelli, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,, Ann. of Math., 171, 1903 (2010) · Zbl 1204.35063
[42] A. Capella, Regularity of radial extremal solutions for some non local semilinear equations,, Comm. Partial Diff. Eq., 36, 1353 (2011) · Zbl 1231.35076
[43] J. A. Carrillo, in, preparation. · Zbl 0831.35137
[44] Z. Q. Chen, Heat kernel estimates for the Dirichlet fractional Laplacian,, J. Eur. Math. Soc. (JEMS), 12, 1307 (2010) · Zbl 1203.60114
[45] S. Cifani, Entropy solution theory for fractional degenerate convection-diffusion equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 413 (2011) · Zbl 1217.35204
[46] S. Cifani, The discontinuous Galerkin method for fractional degenerate convection-diffusion equations,, BIT, 51, 809 (2011) · Zbl 1247.65128
[47] J. S. Chapman, A mean-field model for superconducting vortices,, Eur. J. Appl. Math., 7, 97 (1996) · Zbl 0849.35135
[48] R. Cont, <em>Financial Modelling with Jump Processes</em>,, Chapman & Hall/CRC (2004) · Zbl 1052.91043
[49] E. B. Davies, <em>Heat Kernels and Spectral Theory</em>,, Cambridge Tracts in Mathematics (1990) · Zbl 0699.35006
[50] A. de Pablo, Travelling waves and finite propagation in a reaction-diffusion equation,, J. Differential Equations, 93, 19 (1991) · Zbl 0784.35045
[51] A. De Pablo, A fractional porous medium equation,, Advances in Mathematics, 226, 1378 (2011) · Zbl 1208.26016
[52] A. De Pablo, A general fractional porous medium equation,, Comm. Pure Appl. Math., 65, 1242 (2012) · Zbl 1248.35220
[53] A. de Pablo, Classical solutions for a logarithmic fractional diffusion equation,, to appear in Journal de Math. Pures Appliquées · Zbl 1322.35167
[54] E. Di Nezza, Hitchhiker’s guide to the fractional sobolev spaces,, preprint (2011) · Zbl 1252.46023
[55] G. Duvaut, <em>Les Inéquations en Mechanique et en Physique,</em>, Travaux et Recherches Mathématiques (1972) · Zbl 0298.73001
[56] W. E., Dynamics of vortex-liquids in Ginzburg-Landau theories with applications to superconductivity,, Phys. Rev. B, 50, 1126 (1994)
[57] R. A. Fisher, The wave of advance of advantagenous genes,, Ann. Eugenics, 7, 355 (1937) · JFM 63.1111.04
[58] R. K. Getoor, First passage times for symmetric stable processes in space,, Trans. Amer. Math. Soc., 101, 75 (1961) · Zbl 0104.11203
[59] A. K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation,, Phil. Mag., 26, 65 (1972)
[60] Y. H. Huang, Explicit barenblatt profiles for fractional porous medium equations,, preprint (2013)
[61] M. D. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps,, Comm. Pure Applied Math., 62, 198 (2009) · Zbl 1153.82015
[62] M. D. Jara, Limit theorems for additive functionals of a Markov chain,, Ann. Appl. Probab., 19, 2270 (2009) · Zbl 1232.60018
[63] M. Jara, Hydrodynamic limit Of particle systems with long jumps,, <a href=
[64] M. Jara, Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes,, Probab. Theory Relat. Fields, 145, 565 (2009) · Zbl 1185.60113
[65] M. Kassmann, A priori estimates for integro-differential operators with measurable kernels,, Calc. Var., 34, 1 (2009) · Zbl 1158.35019
[66] J. King, On the Fisher-KPP equation with fast nonlinear diffusion,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459, 2529 (2003) · Zbl 1058.35110
[67] A. Kiselev, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Invent. Math., 167, 445 (2007) · Zbl 1121.35115
[68] A. N. Kolmogorov, Etude de l’équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique,, Bjul. Moskowskogo Gos. Univ., 17, 1 (1937)
[69] N. S. Landkof, <em>Foundations of Modern Potential Theory</em>,, Translated from the Russian by A. P. Doohovskoy (1972) · Zbl 0253.31001
[70] E. K. Lenzi, Crossover in diffusion equation: Anomalous and normal behaviors,, Physical Review E, 67 (2003)
[71] F. H. Lin, On the hydrodynamic limit of Ginzburg-Landau vortices,, Discrete Cont. Dyn. Systems, 6, 121 (2000) · Zbl 1034.35128
[72] V. I. Mazya, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces,, Journal Funct. Anal., 195, 230 (2002) · Zbl 1028.46050
[73] A. Mellet, Fractional diffusion limit for collisional kinetic equations,, Arch. Ration. Mech. Anal., 199, 493 (2011) · Zbl 1294.82033
[74] R. Metzler, The random walk’s guide to anomalous diffusion: A fractional dynamics approach,, Physics Reports, 339, 1 (2000) · Zbl 0984.82032
[75] R. H. Nochetto, A PDE approach to fractional diffusion in general domains: A priori error analysis,, <a href= · Zbl 1347.65178
[76] S. Serfaty, A mean field equation as limit of nonlinear diffusion with fractional laplacian operators,, Calc. Var. PDEs (2013) · Zbl 1290.35316
[77] R. Servadei, On the spectrum of two different fractional operators,, to appear in Proc. Roy. Soc. Edinburgh Sect. A. Available from: <a href=, 12 · Zbl 1304.35752
[78] A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata,, Rendiconti di Matematica e delle sue Applicazioni, 18, 95 (1959) · Zbl 0091.38006
[79] L. E. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplace,, Indiana Univ. Math. J., 55, 1155 (2006) · Zbl 1101.45004
[80] L. E. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Comm. Pure Appl. Math., 60, 6 (2007) · Zbl 1141.49035
[81] D. Stan, The Fisher-KPP equation with nonlinear fractional diffusion,, submitted (2013)
[82] D. Stan, Finite and infinite speed of propagation for porous medium equations with fractional pressure,, Comptes Rendus Acad. Sci. Paris, 352, 123 (2014)
[83] E. M. Stein, <em>Singular Integrals and Differentiability Properties of Functions</em>,, Princeton Mathematical Series (1970) · Zbl 0207.13501
[84] G. Talenti, Elliptic equations and rearrangements,, Ann. Scuola Norm. Sup. (4), 3, 697 (1976) · Zbl 0341.35031
[85] G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl. (4), 110, 353 (1976) · Zbl 0353.46018
[86] F. del Teso, Finite difference method for a fractional porous medium equation,, to appear in Calcolo (2013) · Zbl 1310.76115
[87] F. del Teso, Finite difference method for a general fractional porous medium equation,, <a href= · Zbl 1310.76115
[88] E. Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl., 49, 33 (2009) · Zbl 1242.60047
[89] J. L. Vázquez, Symétrisation pour \(u_t=\Delta\varphi(u)\) et applications,, C. R. Acad. Sc. Paris, 295, 71 (1982)
[90] J. L. Vázquez, <em>Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type</em>,, Oxford Lecture Series in Mathematics and its Applications (2006) · Zbl 1113.35004
[91] J. L. Vázquez, <em>The Porous Medium Equation. Mathematical Theory</em>,, Oxford Mathematical Monographs (2007)
[92] J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators,, in Nonlinear partial differential equations: the Abel Symposium 2010 (ed. H. Kenneth), 271 (2010)
[93] J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type,, to appear in J. Europ. Math. Soc.; <a href= (2013)
[94] J. L. Vázquez, Classical solutions and higher regularity for nonlinear fractional diffusion equations;, <a href=
[95] J. L. Vázquez, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type,, to appear in J. Math. Pures Appl.; <a href=
[96] J. L. Vázquez, Optimal estimates for Fractional Fast diffusion equations,, submitted · Zbl 1327.35417
[97] L. Vlahos, Normal and anomalous Diffusion: A tutorial,, in Order and Chaos (2008)
[98] H. Weinberger, <em>Symmetrization in Uniformly Elliptic Problems</em>,, in 1962 Studies in Mathematical Analysis and Related Topics, 424 (1962) · Zbl 0123.07202
[99] H. Weitzner, Some applications of fractional equations. Chaotic transport and complexity in classical and quantum dynamics,, Commun. Nonlinear Sci. Numer. Simul., 8, 273 (2003) · Zbl 1041.35073
[100] W. A. Woyczyński, Lévy processes in the physical sciences,, in Lévy Processes - Theory and Applications, 241 (2001) · Zbl 0982.60043
[101] Ya. B. Zel’dovich, Towards a theory of heat conduction with thermal conductivity depending on the temperature,, in Collection of Papers Dedicated to 70th Anniversary of A. F. Ioffe, 61 (1950)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.