zbMATH — the first resource for mathematics

Geometric curve evolution and image processing. (English) Zbl 1290.35001
Lecture Notes in Mathematics 1805. Berlin: Springer (ISBN 3-540-00402-5/pbk). x, 187 p. (2003).
Publisher’s description: In image processing, “motions by curvature” provide an efficient way to smooth curves representing the boundaries of objects. In such a motion, each point of the curve moves, at any instant, with a normal velocity equal to a function of the curvature at this point. This book is a rigorous and self-contained exposition of the techniques of “motion by curvature”. The approach is axiomatic and formulated in terms of geometric invariance with respect to the position of the observer. This is translated into mathematical terms, and the author develops the approach of Olver, Sapiro and Tannenbaum, which classifies all curve evolution equations. He then draws a complete parallel with another axiomatic approach using level-set methods: this leads to generalized curvature motions. Finally, novel, and very accurate, numerical schemes are proposed allowing one to compute the solution of highly degenerate evolution equations in a completely invariant way. The convergence of this scheme is also proved.

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
68U10 Computing methodologies for image processing
Full Text: DOI