zbMATH — the first resource for mathematics

Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier-Stokes equations: benchmark results for the flow past a sphere up to Re=500. (English) Zbl 1290.76022
Summary: This paper deals with the implementation of the high-order Discontinuous Galerkin (DG) artificial compressibility flux method into a three-dimensional incompressible Navier-Stokes (INS) solver. The method is fully implicit in time and its distinguishing feature is the formulation of the inviscid interface flux, which is based on the solution of the Riemann problem associated with a local artificial compressibility-like perturbation of the equations.The code has been tested on a wide range of flow regimes considering the flow past a sphere at moderate Reynolds numbers. In order to asses the code reliability and its accuracy in space, up to the sixth order polynomial approximation, and in time, up to the fourth order, both steady (Re=20, 200, 250) and unsteady (Re=300, 500) problems have been approached. With the largest Reynolds number here considered the flow exhibits a complex behavior, even if it still laminar, since undergoes the transition from a regular to an almost chaotic system. For this problem, for which the flow field characteristics are not completely well established and no many data are available in the present literature, detailed results are reported in this paper.

76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J Comput Phys, 218, 2, 794-815, (2006) · Zbl 1158.76313
[2] Liu, J. G.; Shu, C. W., A high-order discontinuous Galerkin method for 2D incompressible flows, J Comput Phys, 160, 2, 577-596, (2000) · Zbl 0963.76069
[3] Cockburn, B.; Kanschat, G.; Schötzau, D.; Schwab, C., Local discontinuous Galerkin methods for the Stokes system, SIAM J Numer Anal, 40, 1, 319-343, (2002) · Zbl 1032.65127
[4] Cockburn, B.; Kanschat, G.; Schötzau, D., The local discontinuous Galerkin method for linearized incompressible fluid flow: a review, Comput Fluids, 34, 491-506, (2005) · Zbl 1138.76382
[5] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math Comput, 74, 1067-1095, (2005) · Zbl 1069.76029
[6] Fischer, P. F.; Shahbazi, K.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J Comput Phys, 222, 1, 391-407, (2007) · Zbl 1216.76034
[7] Nguyen, N. C.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J Comput Phys, 230, 4, 1147-1170, (2011) · Zbl 1391.76353
[8] Botti, L.; Di Pietro, D. A., A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J Comput Phys, 230, 3, 572-585, (2011) · Zbl 1283.76030
[9] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J Comput Phys, 231, 21, 7037-7056, (2012) · Zbl 1284.35311
[10] Bassi, F.; Crivellini, A.; Di Pietro, D. A.; Rebay, S., An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows, Comput Fluids, 36, 10, 1529-1546, (2007), [Special Issue Dedicated to Professor Michele Napolitano on the Occasion of his 60th Birthday] · Zbl 1194.76102
[11] Crivellini, A.; D’Alessandro, V.; Bassi, F., A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, J Comput Phys, 241, 388-415, (2013) · Zbl 1349.76194
[12] Crivellini, A.; D’Alessandro, V.; Bassi, F., High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations, Comput Fluids, 81, 122-133, (2013) · Zbl 1285.76014
[13] Mittal R, Najjar FM. Vortex dynamics in the sphere wake. AIAA paper, 99-3405, 2001.
[14] Tomboulides, A. G.; Orszag, S. A., Numerical investigations of the transitional and weak turbulent flow past a sphere, J Fluid Mech, 416, 45-73, (2000) · Zbl 1156.76419
[15] Lee, S., A numerical study of the unstedy wake behind a sphere in a uniform flow at moderate Reynolds numbers, Comput Fluids, 29, 639-667, (2000) · Zbl 1012.76052
[16] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J Numer Anal, 39, 5, 1749-1779, (2002) · Zbl 1008.65080
[17] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 251-285, (1997) · Zbl 0902.76056
[18] Bassi F, Rebay S, Mariotti G, Pedinotti S, Savini M. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In Decuypere R, Dibelius G, editors. Proceedings of the 2nd European conference on turbomachinery fluid dynamics and thermodynamics, Antwerpen, Belgium: Technologisch Instituut; March 5-7, 1997. P. 99-108.
[19] Cools, R., An encyclopædia of cubature formulas, J Complex, 19, 445-453, (2003) · Zbl 1061.41020
[20] Crivellini, A.; Bassi, F., An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations, Comput Fluids, 50, 1, 81-93, (2011) · Zbl 1271.76164
[21] Hairer, E.; Wanner, G., Solving ordinary differential equations II stiff and differential-algebraic problems, Springer series in computational mathematics, vol. 14, (2010), Springer-Verlag New York, Inc. · Zbl 1192.65097
[22] Iannelli GS, Baker AJ. A stiffly-stable implicit Runge-Kutta algorithm for CFD applications. AIAA paper 88 0416, AIAA, 1988.
[23] Lang, J.; Verwer, J., ROS3P—an accurate third-order rosenbrock solver designed for parabolic problems, BIT, 41, 4, 731-738, (2001) · Zbl 0996.65099
[24] Steinebach G. Order reduction of ROW methods for DAEs and method of lines applications. Preprint. Techn. Hochsch., Fachbereich Mathematik; 1995.
[25] Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC. PETSc Web page, 2001. <http://www.mcs.anl.gov/petsc>
[26] Karypis G, Kumar V. METIS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical report version 4.0, University of Minnesota, Department of Computer Science/Army HPC Research Center; 1998.
[27] Taneda, S., Experimental investigastion of the wake behind a sphere at low Reynolds numbers, J Phys Soc Jpn, 11, 10, 1104-1108, (1956)
[28] Jeong, J.; Hussain, F., On the identification of a vortex, J Fluid Mech, 285, 60, (1995)
[29] Johnson, T. A.; Pathel, V. C., Flow past a sphere up to Reynolds number of 300, J Fluid Mech, 378, 1, 19-70, (1999)
[30] Ploumhans, P.; Wincklemans, G. S.; Salmon, J. K.; Leonard, A.; Warren, M. S., Vortex methods for direct numerical simulation of three-dimensional bluff body flows: applications to the at re=300, 500 and 1000, J Comput Phys, 178, 427-463, (2002) · Zbl 1045.76030
[31] Margavey, R. H.; Bishop, R. L., Wakes in liquid-liquid systems, Phys Fluids, 4, 800, (1961)
[32] Achenbach, E., Vortex shedding from spheres, J Fluid Mech, 62, 209, (1974)
[33] Shampine, L. F., Implementation of rosenbrock methods, ACM Trans Math Softw, 8, 2, 93-113, (1982) · Zbl 0483.65041
[34] Schouveiler, L.; Provansal, M., Self-sustained oscillations in the wake of a sphere, Phys Fluids, 14, 11, 3846-3854, (2002) · Zbl 1185.76323
[35] Sakamoto, H.; Haniu, H., A study on vortex shedding from spheres in a uniform flow, J Fluid Eng, 12, 386-392, (1990)
[36] Sakamoto, H.; Haniu, H., The formation mechanism and shedding frequency of vortices from a sphere in a uniform shear flow, J Fluid Mech, 287, 151-171, (1995)
[37] Brücker, C., Spatio-temporal reconstruction of vortex dynamics in axixymmetric wakes, J Fluids Struct, 15, 3-4, 543-554, (2001)
[38] Achenbach, E., Experiments on the flow past spheres at very high Reynolds numbers, J Fluid Mech, 54, 565, (1972)
[39] Mittal, Rajat, A Fourier-Chebyshev spectral collocation method for simulating flow past spheres and spheroids, Int J Numer Methods Fluids, 30, 7, 921-937, (1999) · Zbl 0957.76060
[40] Mittal, R.; Wilson, J. J.; Najjar, F. M., Symmetry properties of the transitional wake, AIAA J, 40, 3, 579-582, (2002)
[41] Tabata, M.; Itakura, K., A precise computation of drag coefficients of a sphere, Int J Comput Fluid Dyn, 9, 3-4, 303-311, (1998) · Zbl 0917.76040
[42] Schlichting, H., Boundary-layer theory, (1979), McGraw-Hill New York
[43] Hartmann, Daniel; Meinke, Matthias; Schröder, Wolfgang, A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids, Comput Methods Appl Mech Eng, 200, 9-12, 1038-1052, (2011) · Zbl 1225.76211
[44] Costantinescu GS, Squires KD. LES and DES investigations of turbulent flow over a sphere. AIAA Paper 2000-00540, AIAA; 2000.
[45] Wang, X. Y.; Yeo, K. S.; Chew, C. S.; Khoo, B. C., A SVD-GFD scheme for computing 3d incompressible viscous fluid flows, Comput Fluids, 37, 6, 733-746, (2008) · Zbl 1237.76110
[46] Kim, Jungwoo; Kim, Dongjoo; Choi, Haecheon, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J Comput Phys, 171, 1, 132-150, (2001) · Zbl 1057.76039
[47] Eitel-Amor, G.; Meinke, M.; Schröder, W., A lattice-Boltzmann method with hierarchically refined meshes, Comput Fluids, 75, 0, 127-139, (2013) · Zbl 1277.76082
[48] Roos, F. W.; Willmarth, Some experimental results on sphere and disk drag, AIAA J, 9, 2, 285-291, (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.