Takizawa, Kenji; Henicke, Bradley; Puntel, Anthony; Kostov, Nikolay; Tezduyar, Tayfun E. Computer modeling techniques for flapping-wing aerodynamics of a locust. (English) Zbl 1290.76170 Comput. Fluids 85, 125-134 (2013). Summary: We present an overview of the special computer modeling techniques we have developed recently for flapping-wing aerodynamics of a locust. The wing motion and deformation data is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel. The special techniques have been developed around our core computational technique, which is the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation. Here we use the version of the DSD/SST formulation derived in conjunction with the variational multiscale (VMS) method, and this version is called “DSD/SST-VMST.” The special techniques are based on using, in the space-time flow computations, NURBS basis functions for the temporal representation of the motion and deformation of the locust wings. Temporal NURBS basis functions are used also in representation of the motion of the volume meshes computed and in remeshing. In this special-issue paper, we present a condensed version of the material from [K. Takizawa et al., Comput. Mech. 50, No. 6, 743–760 (2012; Zbl 1286.76179)], concentrating on the flapping-motion modeling and computations, and also a temporal-order study from [K. Takizawa et al., Comput. Mech. 50, No. 6, 761–778 (2012; Zbl 1286.76180)]. Cited in 51 Documents MSC: 76Z10 Biopropulsion in water and in air 92C10 Biomechanics Keywords:flapping wings; locust; computational aerodynamics; space-time techniques; nurbs; temporal NURBS Citations:Zbl 1286.76179; Zbl 1286.76180 PDF BibTeX XML Cite \textit{K. Takizawa} et al., Comput. Fluids 85, 125--134 (2013; Zbl 1290.76170) Full Text: DOI OpenURL References: [1] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput Mech, 50, 743-760, (2012) · Zbl 1286.76179 [2] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, T. E., Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput Mech, 50, 761-778, (2012) · Zbl 1286.76180 [3] Takizawa, K.; Henicke, B.; Puntel, A.; Spielman, T.; Tezduyar, T. E., Space-time computational techniques for the aerodynamics of flapping wings, J Appl Mech, 79, 010903, (2012) [4] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv Appl Mech, 28, 1-44, (1992) · Zbl 0747.76069 [5] Tezduyar, T. E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: I. the concept and the preliminary numerical tests, Comput Methods Appl Mech Eng, 94, 3, 339-351, (1992) · Zbl 0745.76044 [6] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces - the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput Methods Appl Mech Eng, 94, 3, 353-371, (1992) · Zbl 0745.76045 [7] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575, (2003) · Zbl 1032.76605 [8] Tezduyar, T. E.; Sathe, S., Modeling of fluid-structure interactions with the space-time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900, (2007) · Zbl 1144.74044 [9] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput Mech, 48, 247-267, (2011) · Zbl 1398.76128 [10] Takizawa, K.; Tezduyar, T. E., Space-time fluid-structure interaction methods, Math Models Methods Appl Sci, 22, Supp. 02, 1230001, (2012) · Zbl 1248.76118 [11] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 329-349, (1981) · Zbl 0482.76039 [12] Ohayon, R., Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems, Comput Methods Appl Mech Eng, 190, 3009-3019, (2001) · Zbl 0971.74032 [13] van Brummelen, E. H.; de Borst, R., On the nonnormality of subiteration for a fluid-structure interaction problem, SIAM J Sci Comput, 27, 599-621, (2005) · Zbl 1136.65334 [14] Bazilevs, Y.; Calo, V. M.; Zhang, Y.; Hughes, T. J.R., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput Mech, 38, 310-322, (2006) · Zbl 1161.74020 [15] Lohner, R.; Cebral, J. R.; Yang, C.; Baum, J. D.; Mestreau, E. L.; Soto, O., Extending the range of applicability of the loose coupling approach for FSI simulations, (Bungartz, H.-J.; Schafer, M., Fluid-structure interaction, lecture notes in computational science and engineering, vol. 53, (2006), Springer), 82-100 · Zbl 1323.74091 [16] Sawada, T.; Hisada, T., Fluid-structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method, Comput Fluids, 36, 136-146, (2007) · Zbl 1181.76099 [17] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37, (2008) · Zbl 1169.74015 [18] Dettmer, W. G.; Peric, D., On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction, Comput Mech, 43, 81-90, (2008) · Zbl 1235.74272 [19] Heil, M.; Hazel, A. L.; Boyle, J., Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches, Comput Mech, 43, 91-101, (2008) · Zbl 1309.76126 [20] Sternel, D. C.; Schaefer, M.; Heck, M.; Yigit, S., Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach, Comput Mech, 43, 103-113, (2008) · Zbl 1234.74053 [21] Bazilevs, Y.; Gohean, J. R.; Hughes, T. J.R.; Moser, R. D.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput Methods Appl Mech Eng, 198, 3534-3550, (2009) · Zbl 1229.74096 [22] Bazilevs, Y.; Hsu, M.-C.; Benson, D.; Sankaran, S.; Marsden, A., Computational fluid-structure interaction: methods and application to a total cavopulmonary connection, Comput Mech, 45, 77-89, (2009) · Zbl 1398.92056 [23] Calderer, R.; Masud, A., A multiscale stabilized ALE formulation for incompressible flows with moving boundaries, Comput Mech, 46, 185-197, (2010) · Zbl 1301.76057 [24] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T., A fully-coupled fluid-structure interaction simulation of cerebral aneurysms, Comput Mech, 46, 3-16, (2010) · Zbl 1301.92014 [25] Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Kvamsdal, T.; Hentschel, S., Computational fluid-structure interaction: methods and application to cerebral aneurysms, Biomechanics Modeling Mechanobiology, 9, 481-498, (2010) [26] Bazilevs, Y.; Hsu, M.-C.; Akkerman, I.; Wright, S.; Takizawa, K.; Henicke, B., 3D simulation of wind turbine rotors at full scale. part I: geometry modeling and aerodynamics, Int J Numer Methods Fluids, 65, 207-235, (2011) · Zbl 1428.76086 [27] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wüchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. part II: fluid-structure interaction modeling with composite blades, Int J Numer Methods Fluids, 65, 236-253, (2011) · Zbl 1428.76087 [28] Hsu, M.-C.; Bazilevs, Y., Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations, Finite Elem Analysis Des, 47, 593-599, (2011) [29] Nagaoka, S.; Nakabayashi, Y.; Yagawa, G.; Kim, Y. J., Accurate fluid-structure interaction computations using elements without mid-side nodes, Comput Mech, 48, 269-276, (2011) · Zbl 1398.76119 [30] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259, (1982) · Zbl 0497.76041 [31] Tezduyar, T. E.; Mittal, S.; Ray, S. E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput Methods Appl Mech Eng, 95, 221-242, (1992) · Zbl 0756.76048 [32] Mittal, S.; Tezduyar, T. E., A finite element study of incompressible flows past oscillating cylinders and aerofoils, Int J Numer Methods Fluids, 15, 1073-1118, (1992) [33] Mittal, S.; Tezduyar, T. E., Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput Methods Appl Mech Eng, 112, 253-282, (1994) · Zbl 0846.76048 [34] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Kalro, V.; Litke, M., Flow simulation and high performance computing, Comput Mech, 18, 397-412, (1996) · Zbl 0893.76046 [35] Behr, M.; Tezduyar, T., The shear-slip mesh update method, Comput Methods Appl Mech Eng, 174, 261-274, (1999) · Zbl 0959.76037 [36] Tezduyar, T. E., Finite element methods for flow problems with moving boundaries and interfaces, Arch Comput Methods Eng, 8, 83-130, (2001) · Zbl 1039.76037 [37] Behr, M.; Tezduyar, T., Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components, Comput Methods Appl Mech Eng, 190, 3189-3200, (2001) · Zbl 1012.76042 [38] Tezduyar, T. E.; Behr, M.; Mittal, S.; Johnson, A. A., Computation of unsteady incompressible flows with the finite element methods - space-time formulations, iterative strategies and massively parallel implementations, (New Methods in Transient Analysis, PVP-vol. 246/AMD-vol. 143, (1992), ASME New York), 7-24 [39] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Computer, 26, 10, 27-36, (1993) [40] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput Methods Appl Mech Eng, 119, 73-94, (1994) · Zbl 0848.76036 [41] Johnson, A. A.; Tezduyar, T. E., Simulation of multiple spheres falling in a liquid-filled tube, Comput Methods Appl Mech Eng, 134, 351-373, (1996) · Zbl 0895.76046 [42] Johnson, A. A.; Tezduyar, T. E., Parallel computation of incompressible flows with complex geometries, Int J Numer Methods Fluids, 24, 1321-1340, (1997) · Zbl 0882.76044 [43] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements, J Appl Mech, 70, 58-63, (2003) · Zbl 1110.74689 [44] Stein, K.; Tezduyar, T. E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput Methods Appl Mech Eng, 193, 2019-2032, (2004) · Zbl 1067.74587 [45] Hughes, T. J.R., Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401, (1995) · Zbl 0866.76044 [46] Hughes, T. J.R.; Oberai, A. A.; Mazzei, L., Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys Fluids, 13, 1784-1799, (2001) · Zbl 1184.76237 [47] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201, (2007) · Zbl 1169.76352 [48] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method, J Comput Phys, 229, 3402-3414, (2010) · Zbl 1290.76037 [49] Takizawa, K.; Henicke, B.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 333-344, (2011) · Zbl 1398.76127 [50] Takizawa, K.; Henicke, B.; Montes, D.; Tezduyar, T. E.; Hsu, M.-C.; Bazilevs, Y., Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics, Comput Mech, 48, 647-657, (2011) · Zbl 1334.74032 [51] Tezduyar, T. E.; Aliabadi, S. K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput Methods Appl Mech Eng, 119, 157-177, (1994) · Zbl 0848.76040 [52] Guler, I.; Behr, M.; Tezduyar, T., Parallel finite element computation of free-surface flows, Comput Mech, 23, 117-123, (1999) · Zbl 0948.76039 [53] Akin, J. E.; Tezduyar, T. E.; Ungor, M., Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT), Comput Fluids, 36, 2-11, (2007) · Zbl 1181.76105 [54] Aliabadi, S. K.; Tezduyar, T. E., Parallel fluid dynamics computations in aerospace applications, Int J Numer Methods Fluids, 21, 783-805, (1995) · Zbl 0862.76033 [55] Tezduyar, T.; Osawa, Y., The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft, Comput Methods Appl Mech Eng, 191, 705-716, (2001) · Zbl 1113.76406 [56] Aliabadi, S. K.; Tezduyar, T. E., Space-time finite element computation of compressible flows involving moving boundaries and interfaces, Comput Methods Appl Mech Eng, 107, 1-2, 209-223, (1993) · Zbl 0798.76037 [57] Kashiyama, K.; Saitoh, K.; Behr, M.; Tezduyar, T. E., Parallel finite element methods for large-scale computation of storm surges and tidal flows, Int J Numer Methods Fluids, 24, 1371-1389, (1997) · Zbl 0881.76052 [58] Takase, S.; Kashiyama, K.; Tanaka, S.; Tezduyar, T. E., Space-time SUPG finite element computation of shallow-water flows with moving shorelines, Comput Mech, 48, 293-306, (2011) · Zbl 1398.76126 [59] Johnson, A. A.; Tezduyar, T. E., 3D simulation of fluid-particle interactions with the number of particles reaching 100, Comput Methods Appl Mech Eng, 145, 301-321, (1997) · Zbl 0893.76043 [60] Johnson, A. A.; Tezduyar, T. E., Advanced mesh generation and update methods for 3D flow simulations, Comput Mech, 23, 130-143, (1999) · Zbl 0949.76049 [61] Johnson, A.; Tezduyar, T., Methods for 3D computation of fluid-object interactions in spatially-periodic flows, Comput Methods Appl Mech Eng, 190, 3201-3221, (2001) · Zbl 0971.76048 [62] Mittal, S.; Tezduyar, T. E., Parallel finite element simulation of 3D incompressible flows - fluid-structure interactions, Int J Numer Methods Fluids, 21, 933-953, (1995) · Zbl 0873.76047 [63] Kalro, V.; Tezduyar, T. E., A parallel 3D computational method for fluid-structure interactions in parachute systems, Comput Methods Appl Mech Eng, 190, 321-332, (2000) · Zbl 0993.76044 [64] Stein, K.; Benney, R.; Kalro, V.; Tezduyar, T. E.; Leonard, J.; Accorsi, M., Parachute fluid-structure interactions: 3-D computation, Comput Methods Appl Mech Eng, 190, 373-386, (2000) · Zbl 0973.76055 [65] Tezduyar, T.; Osawa, Y., Fluid-structure interactions of a parachute crossing the far wake of an aircraft, Comput Methods Appl Mech Eng, 191, 717-726, (2001) · Zbl 1113.76407 [66] Tezduyar, T. E.; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput Methods Appl Mech Eng, 195, 2002-2027, (2006) · Zbl 1118.74052 [67] Tezduyar, T. E.; Sathe, S.; Stein, K., Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations, Comput Methods Appl Mech Eng, 195, 5743-5753, (2006) · Zbl 1123.76035 [68] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation, Comput Methods Appl Mech Eng, 195, 1885-1895, (2006) · Zbl 1178.76241 [69] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures, Comput Mech, 38, 482-490, (2006) · Zbl 1160.76061 [70] Tezduyar, T. E., Finite elements in fluids: stabilized formulations and moving boundaries and interfaces, Comput Fluids, 36, 191-206, (2007) · Zbl 1177.76202 [71] Tezduyar, T. E.; Sathe, S.; Cragin, T.; Nanna, B.; Conklin, B. S.; Pausewang, J., Modeling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics, Int J Numer Methods Fluids, 54, 901-922, (2007) · Zbl 1276.76043 [72] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Influence of wall elasticity in patient-specific hemodynamic simulations, Comput Fluids, 36, 160-168, (2007) · Zbl 1113.76105 [73] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm — dependence of the effect on the aneurysm shape, Int J Numer Methods Fluids, 54, 995-1009, (2007) · Zbl 1317.76107 [74] Manguoglu, M.; Sameh, A. H.; Tezduyar, T. E.; Sathe, S., A nested iterative scheme for computation of incompressible flows in long domains, Comput Mech, 43, 73-80, (2008) · Zbl 1279.76024 [75] Tezduyar, T. E.; Sathe, S.; Pausewang, J.; Schwaab, M.; Christopher, J.; Crabtree, J., Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods, Comput Mech, 43, 39-49, (2008) · Zbl 1310.74049 [76] Tezduyar, T. E.; Sathe, S.; Schwaab, M.; Pausewang, J.; Christopher, J.; Crabtree, J., Fluid-structure interaction modeling of ringsail parachutes, Comput Mech, 43, 133-142, (2008) · Zbl 1209.74022 [77] Sathe, S.; Tezduyar, T. E., Modeling of fluid-structure interactions with the space-time finite elements: contact problems, Comput Mech, 43, 51-60, (2008) · Zbl 1297.74129 [78] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling, Comput Mech, 43, 151-159, (2008) · Zbl 1169.74032 [79] Tezduyar, T. E.; Schwaab, M.; Sathe, S., Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique, Comput Methods Appl Mech Eng, 198, 3524-3533, (2009) · Zbl 1229.74100 [80] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes, Comput Methods Appl Mech Eng, 198, 3613-3621, (2009) · Zbl 1229.74101 [81] Manguoglu, M.; Sameh, A. H.; Saied, F.; Tezduyar, T. E.; Sathe, S., Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows, J Appl Mech, 76, 021204, (2009) [82] Takizawa, K.; Christopher, J.; Tezduyar, T. E.; Sathe, S., Space-time finite element computation of arterial fluid-structure interactions with patient-specific data, Int J Numer Methods Biomed Eng, 26, 101-116, (2010) · Zbl 1180.92023 [83] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Multiscale sequentially-coupled arterial FSI technique, Comput Mech, 46, 17-29, (2010) · Zbl 1261.92010 [84] Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J.; Tezduyar, T. E., Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions, Comput Mech, 46, 31-41, (2010) · Zbl 1301.92019 [85] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms, Int J Numer Methods Biomed Eng, 26, 336-347, (2010) · Zbl 1183.92050 [86] Manguoglu, M.; Takizawa, K.; Sameh, A. H.; Tezduyar, T. E., Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement, Comput Mech, 46, 83-89, (2010) · Zbl 1301.76087 [87] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Role of 0D peripheral vasculature model in fluid-structure interaction modeling of aneurysms, Comput Mech, 46, 43-52, (2010) · Zbl 1301.92020 [88] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Int J Numer Methods Fluids, 64, 1201-1218, (2010) · Zbl 1427.76148 [89] Takizawa, K.; Moorman, C.; Wright, S.; Spielman, T.; Tezduyar, T. E., Fluid-structure interaction modeling and performance analysis of the orion spacecraft parachutes, Int J Numer Methods Fluids, 65, 271-285, (2011) · Zbl 1428.76011 [90] Takizawa, K.; Moorman, C.; Wright, S.; Purdue, J.; McPhail, T.; Chen, P. R., Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms, Int J Numer Methods Fluids, 65, 308-323, (2011) · Zbl 1203.92044 [91] Takizawa, K.; Wright, S.; Moorman, C.; Tezduyar, T. E., Fluid-structure interaction modeling of parachute clusters, Int J Numer Methods Fluids, 65, 286-307, (2011) · Zbl 1426.76312 [92] Manguoglu, M.; Takizawa, K.; Sameh, A. H.; Tezduyar, T. E., Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement, Int J Numer Methods Fluids, 65, 135-149, (2011) · Zbl 1427.76285 [93] Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T. E., Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms, Int J Numer Methods Fluids, 65, 324-340, (2011) · Zbl 1203.92045 [94] Tezduyar, T. E.; Takizawa, K.; Brummer, T.; Chen, P. R., Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms, Int J Numer Methods Biomed Eng, 27, 1665-1710, (2011) · Zbl 1244.92036 [95] Takizawa, K.; Spielman, T.; Tezduyar, T. E., Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters, Comput Mech, 48, 345-364, (2011) · Zbl 1398.74095 [96] Takizawa, K.; Spielman, T.; Moorman, C.; Tezduyar, T. E., Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design, J Appl Mech, 79, 010907, (2012) [97] Takizawa, K.; Brummer, T.; Tezduyar, T. E.; Chen, P. R., A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms, J Appl Mech, 79, 010908, (2012) [98] Manguoglu, M.; Takizawa, K.; Sameh, A. H.; Tezduyar, T. E., A parallel sparse algorithm targeting arterial fluid mechanics computations, Comput Mech, 48, 377-384, (2011) · Zbl 1398.76115 [99] Takizawa, K.; Tezduyar, T. E., Computational methods for parachute fluid-structure interactions, Arch Comput Methods Eng, 19, 125-169, (2012) · Zbl 1354.76113 [100] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E., Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling, Arch Comput Methods Eng, 19, 171-225, (2012) · Zbl 1354.92023 [101] Wu, T. Y., Fish swimming and bird/insect flight, Annu Rev Fluid Mech, 43, 25-58, (2011) · Zbl 1210.76095 [102] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419 [103] Bazilevs, Y.; Hughes, T. J.R., NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput Mech, 43, 143-150, (2008) · Zbl 1171.76043 [104] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J Sci Comput, 20, 359-392, (1998) · Zbl 0915.68129 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.