×

zbMATH — the first resource for mathematics

A structured pseudospectral method for \(\mathcal {H}_{\infty}\)-norm computation of large-scale descriptor systems. (English) Zbl 1290.93083
Summary: In this paper, we discuss the problem of computing the \(\mathcal {H}_{\infty}\)-norm of transfer functions associated to large-scale descriptor systems. We exploit the relationship between the \(\mathcal {H}_{\infty}\)-norm and the structured complex stability radius of a corresponding matrix pencil. To compute the structured stability radius we consider so-called structured pseudospectra. Namely, we have to find the pseudospectrum touching the imaginary axis. Therefore, we set up an iteration over the real part of the rightmost pseudo-eigenvalue. For that, we use a new fast iterative scheme which is based on certain rank-1 perturbations of a matrix pencil. Finally, we analyze the performance of our algorithm by using real-world examples. In particular we compare our method with different other algorithms including a recently and independently derived method from Guglielmi, Gürbüzbalaban and Overton.

MSC:
93B60 Eigenvalue problems
93B36 \(H^\infty\)-control
93A15 Large-scale systems
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Benner, P; Byers, R; Mehrmann, V; Xu, H, Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils, SIAM J Matrix Anal Appl, 24, 165-190, (2002) · Zbl 1035.49022
[2] Benner P, Saak J, Schieweck F, Skrzypacz P, Weichelt HK (2012) A non-conforming composite quadrilateral finite element pair for feedback stabilization of the Stokes equations. J Numer Math. Accepted, also available as Max Planck Institute Magdeburg, Preprint MPIMD/12-19 · Zbl 1303.65095
[3] Benner P, Sima V, Voigt M (2012) \({\cal L}_∞ \)-norm computation for continuous-time descriptor systems using structured matrix pencils. IEEE Trans Automat Control 57:233-238 · Zbl 1369.93174
[4] Benner P, Sima V, Voigt M (2012) Robust and efficient algorithms for \({\cal L}_∞ \)-norm computation for descriptor systems. In: Proceedings of the 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, IFAC, pp 195-200 · Zbl 0805.15005
[5] Benner, P; Voigt, M, \({\cal {H}}_∞ \)-norm computation for large and sparse descriptor systems, Proc Appl Math Mech, 12, 797-800, (2012)
[6] Benner P, Voigt M (2012) Numerical computation of structured complex stability radii od large-scale matrices and pencils. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui, Hawaii, pp 6560-6565
[7] Boyd, S; Balakrishnan, V, A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \(L_{∞ }\)-norm, Syst Control Lett, 15, 1-7, (1990) · Zbl 0704.93014
[8] Boyd, S; Balakrishnan, V; Kabamba, P, A bisection method for computing the \(H_∞ \) norm of a transfer matrix and related problems, Math Control Signals Syst, 2, 207-219, (1989) · Zbl 0674.93020
[9] Bruinsma, NA; Steinbuch, M, A fast algorithm to compute the \(H_{∞ }\)-norm of a transfer function matrix, Syst Control Lett, 14, 287-293, (1990) · Zbl 0699.93021
[10] Burke, JV; Lewis, AS; Overton, ML, Robust stability and a criss-cross algorithm for pseudospectra, IMA J Numer Anal, 23, 359-375, (2003) · Zbl 1042.65060
[11] Byers, R, A bisection method for measuring the distance of a stable matrix to the unstable matrices, SIAM J Sci Stat Comput, 9, 875-881, (1988) · Zbl 0658.65044
[12] Byers R, Nichols NK (1993) On the stability radius of generalized state-space systems. Linear Algebra Appl 188-189:113-134 · Zbl 0783.65056
[13] Chahlaoui Y, Gallivan K, Van Dooren P (2004) \({\cal H}_∞ \)-norm calculations of large sparse systems. In: Proceedings of the International Symposium of Mathematical Theory of Networks and Systems. Leuven, Belgium · Zbl 1359.93134
[14] Chahlaoui Y, Gallivan K, Van Dooren P (Oct. 2007) Calculating the \({\cal H}_∞ \) norm of a large sparse system via Chandrasekhar iterations and extrapolation. In: ESAIM Proceedings, vol 20. Rabat, Algeria · Zbl 1359.93134
[15] Y. Chahlaoui, Van Dooren P (2002) A collection of benchmark examples for model reduction of linear time invariant dynamical systems. Technical report, Feb. 2002. SLICOT Working Note 2002-2 · Zbl 1100.93006
[16] Dai L (1989) Singular control systems, vol. 118 of Lecture Notes in Control and Inform. Sci. Springer, Heidelberg · Zbl 0669.93034
[17] Du, NH, Stability radii of differential algebraic equations with structured perturbations, Syst Control Lett, 57, 546-553, (2008) · Zbl 1140.93027
[18] Du NH, Linh VH, Mehrmann V (2013) Robust stability of differential-algebraic equations. In Surveys in Differential-Algebraic Equations I. In: Ilchmann A, Reis T (eds) Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg, ch. 2, pp 63-95 · Zbl 1281.34002
[19] Du, NH; Thuan, DD; Liem, NC, Stability radius of implicit dynamic equations with constant coefficients on time scales, Syst Control Lett, 60, 596-603, (2011) · Zbl 1236.93119
[20] Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. B. G. Teubner, Stuttgart · Zbl 0899.70001
[21] Freitas, F; Rommes, J; Martins, N, Gramian-based reduction method applied to large sparse power system descriptor models, IEEE Trans Power Syst, 23, 1258-1270, (2008)
[22] Guglielmi, N; Gürbüzbalaban, M; Overton, ML, Fast approximation of the \(H_∞ \) norm via optimization of spectral value sets, SIAM J Matrix Anal Appl, 34, 709-737, (2013) · Zbl 1271.93057
[23] Guglielmi N, Kressner D, Lubich C (2013) Low-rank differential equations for Hamiltonian matrix nearness problems, Oberwolfach Preprint OWP 2013-01, Mathematisches Forschungsinstitut Oberwolfach, Jan. 2013. Available from http://www.mfo.de/scientific-programme/publications/owp/2013/OWP2013_01.pdf · Zbl 0699.93021
[24] Guglielmi N, Lubich C (2013) Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J Matrix Anal Appl (in press) · Zbl 1272.65032
[25] Guglielmi N, Overton ML Local convergence analysis of [22]- private communication with M. L. Overton
[26] Guglielmi, N; Overton, ML, Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix, SIAM J Matrix Anal Appl, 32, 1166-1192, (2011) · Zbl 1248.65034
[27] Heinkenschloss, M; Sorensen, DC; Sun, K, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J Sci Comput, 30, 1038-1063, (2008) · Zbl 1216.76015
[28] Hinrichsen D, Pritchard AJ (1986) Stability radii of linear systems. Syst Control Lett 7:1-10 · Zbl 0631.93064
[29] Hinrichsen, D; Pritchard, AJ, Stability radius for structured perturbations and the algebraic Riccati equation, Syst Control Lett, 8, 105-113, (1986) · Zbl 0626.93054
[30] Hinrichsen D, Pritchard AJ (1990) Real and complex stability radii: a survey. In: Progress in systems and Control Theory, vol 6. Birkhäuser, Boston, pp 119-162 · Zbl 0729.93056
[31] Kunkel P, Mehrmann V (2006) Differential-Algebraic Equations—Analysis and Numerical Solution. In: Textbooks in Mathematics. European Mathematical Society, Zürich · Zbl 1095.34004
[32] Leibfritz F (2004) Compl\(_{e}\)ib: Constraint matrix-optimization problem library—a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Technical report, 2004. Available from http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_Main_Paper.pdf · Zbl 0704.93014
[33] Leibfritz F, Lipinski W (2004) Compl\(_{e}\)ib 1.0 - user manual and quick reference. Technical report, 2004. Available from http://www.friedemann-leibfritz.de/COMPlib_Data/COMPlib_User_Guide.pdf · Zbl 1042.65060
[34] Martins, N; Pellanda, PC; Rommes, J, Computation of transfer function dominant zeros with applications to oscillation damping control of large power systems, IEEE Trans Power Syst, 22, 1657-1664, (2007)
[35] Mehrmann, V; Schröder, C; Simoncini, V, An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems, Linear Algebra Appl, 436, 4070-4087, (2012) · Zbl 1247.65050
[36] Mehrmann V, Stykel T (2005) Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner P, Mehrmann V, Sorensen D (eds) Dimension Reduction of Large-Scale Systems, vol 45 of Lecture Notes Comput. Sci. Eng. Springer, Berlin, Heidelberg, New York, ch. 3, pp 89-116 · Zbl 1107.93013
[37] Overton ML, Van Dooren P (2005) On computing the complex passivity radius. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, pp 7960-7964
[38] Reis, T, Circuit synthesis of passive descriptor systems—a modified nodal approach, Int J Circ Theor Appl, 38, 44-68, (2010) · Zbl 1191.94159
[39] Reis T, Stykel T (2010) PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans Computer-Aided Design Integr Circuits Syst 29:1354-1367
[40] Reis, T; Stykel, T, Lyapunov balancing for passivity-preserving model reduction of RC circuits, SIAM J Appl Dyn Syst, 10, 1-34, (2011) · Zbl 1213.78038
[41] Riedel, KS, Generalized epsilon-pseudospectra, SIAM J Numer Anal, 31, 1219-1225, (1994) · Zbl 0805.15005
[42] Rommes, J, Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems \(Ax=λ Bx\) with singular \(B\), Math Comp, 77, 995-1015, (2008) · Zbl 1133.65020
[43] Rommes, J; Martins, N, Efficient computation of multivariate transfer function dominant poles using subspace acceleration, IEEE Trans Power Syst, 21, 1471-1483, (2006)
[44] Rommes, J; Martins, N, Efficient computation of transfer function dominant poles using subspace acceleration, IEEE Trans Power Syst, 21, 1218-1226, (2006)
[45] Rommes, J; Sleijpen, GLG, Convergence of the dominant pole algorithm and Rayleigh quotient iteration, SIAM J Matrix Anal Appl, 30, 346-363, (2008) · Zbl 1165.65016
[46] Stewart GW, Sun J-G (1990) Matrix Perturbation Theory. In: Computer Science and Scientific Computing. Academic Press, London
[47] Weickert J (1997) Applications of the Theory of Differential-Algebraic Equations to Partial Differential Equations of Fluid Dynamics. PhD thesis, Chemnitz University of Technology, Department of Mathematics, Germany · Zbl 0917.65083
[48] Wright TG (2002) Eigtool, 2002. Available from http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
[49] Zhou K, Doyle JD (1998) Essentials of Robust Control, 1st edn. Prentice Hall, Upper Saddle River
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.