×

zbMATH — the first resource for mathematics

Symbolic bisimulation for quantum processes. (English) Zbl 1291.68237

MSC:
68Q55 Semantics in the theory of computing
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
81P68 Quantum computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. H. Bennett and G. Brassard. 1984. Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computer, Systems and Signal Processing. 175–179. · Zbl 1306.81030
[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters. 1993. Teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899. · Zbl 1051.81505
[3] C. H. Bennett and S. J. Wiesner. 1992. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 20, 2881–2884. · Zbl 0968.81506
[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. 1992. Symbolic model checking: 1020 states and beyond. Inf. Comput. 98, 2, 142–170. · Zbl 0753.68066
[5] J. Cheriyan, T. Hagerup, and K. Mehlhorn. 1990. Can a maximum flow be computed in o(nm) time? In Automata, Languages and Programming, M. Paterson, Ed., Lecture Notes in Computer Science, vol. 443, Springer, 235–248. · Zbl 0768.90020
[6] T. A. S. Davidson. 2011. Formal verification techniques using quantum process calculus. PhD thesis, University of Warwick.
[7] Y. Deng and W. Du. 2011. Logical, metric, and algorithmic characterisations of probabilistic bisimulation. arXiv:1103.4577v1 {cs.LO}. Tech. rep. CMU-CS-11-110, Carnegie Mellon University.
[8] Y. Deng and Y. Feng. 2012. Open bisimulation for quantum processes. In Theoiretical Computer Science, Lecture Notes in Computer Science, vol. 7604, Springer, 119–133. (Full version available at http://arxiv.org/abs/1202.3484). · Zbl 1362.68210
[9] Y. Feng, R. Duan, Z. Ji, and M. Ying. 2007. Probabilistic bisimulations for quantum processes. Inf. Comput. 205, 11, 1608–1639. · Zbl 1130.68079
[10] Y. Feng, R. Duan, and M. Ying. 2011. Bisimulation for quantum processes. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 523–534. · Zbl 1284.68425
[11] Y. Feng, R. Duan, and M. Ying. 2012. Bisimulation for quantum processes. ACM Trans. Program. Lang. Syst. 34, 4, 1–43.
[12] Y. Feng, N. Yu, and M. Ying. 2013. Model checking quantum Markov chains. J. Comput. Syst. Sci. 79, 7, 1181–1198. · Zbl 1311.68086
[13] S. Gay, R. Nagarajan, and N. Papanikolaou. 2006. Probabilistic model-checking of quantum protocols. In Proceedings of the 2nd International Workshop on Developments in Computational Models. · Zbl 1196.68135
[14] S. Gay, R. Nagarajan, and N. Papanikolaou. 2008. QMC: A model checker for quantum systems. In Proceedings of the International Conference on Computer Aided Verification. Springer, 543–547.
[15] S. Gay and R. Nagarajan. 2005. Communicating quantum processes. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. J. Palsberg and M. Abadi, Eds., 145–157. · Zbl 1369.68207
[16] M. Hennessy and A. Ingolfsdotir. 1993. A theory of communicating processes value-passing. Inf. Comput. 107, 2, 202–236. · Zbl 0794.68098
[17] M. Hennessy and H. Lin. 1995. Symbolic bisimulations. Theor. Comput. Sci. 138, 2, 353–389. · Zbl 0874.68187
[18] P. Jorrand and M. Lalire. 2004. Toward a quantum process algebra. In Proceedings of the 2nd International Workshop on Quantum Programming Languages. P. Selinger, Ed., 111.
[19] K. Kraus. 1983. States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer. · Zbl 0545.46049
[20] T. Kubota, Y. Kakutani, G. Kato, Y. Kawano, and H. Sakurada. 2012. Application of a process calculus to security proofs of quantum protocols. In Proceedings of the International Conference on Foundations of Computer Science (FCS’12). · Zbl 1336.68164
[21] M. Lalire. 2006. Relations among quantum processes: Bisimilarity and congruence. Math. Structures Comput. Sci. 16, 3, 407–428. · Zbl 1122.68060
[22] R. Milner. 1989. Communication and Concurrency. Prentice Hall, Englewood Cliffs, NJ. · Zbl 0683.68008
[23] M. Nielsen and I. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press. · Zbl 1049.81015
[24] N. K. Papanikolaou. 2008. Model checking quantum protocols. Ph.D. thesis, University of Warwick.
[25] D. Sangiorgi. 1996. A theory of bisimulation for the pi-calculus. Acta Informatica 33, 1, 69–97. · Zbl 0835.68072
[26] Neumann, J. 1955. States, Effects and Operations: Fundamental Notions of Quantum Theory. Princeton University Press.
[27] M. Ying, Y. Feng, R. Duan, and Z. Ji. 2009. An algebra of quantum processes. ACM Trans. Comput. Log. 10, 3, 1–36. · Zbl 1351.68187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.