×

Grid turbulence in dilute polymer solutions: PEO in water. (English) Zbl 1291.76022

Summary: Grid turbulence of polyethylene oxide (PEO) solutions (Polyox WSR-301 in H\(_2\)O) has been investigated experimentally for three concentrations of 25, 50 and 100 weight ppm, at a turbulence Reynolds number based on a Taylor microscale of \(Re_\lambda \approx 100\). For the first time, time sequences of turbulence spectra have been acquired at a rate of 0.005 Hz to reveal the spectral evolution due to mechanical degradation of the polymers. In contrast to spectra averaged over the entire degradation process, the sequence of spectra reveals a clear but time-dependent Lumley scale at which the energy spectrum changes abruptly from the Kolmogorov \(\kappa^{-5/3}\) inertial range to a \(\kappa^{-3}\) elastic range, in which the rate of strain is maintained constant by the polymers. The scaling of the initial Lumley length with Kolmogorov dissipation rate \(\epsilon_{0}\) and molecular weight is determined, and a cascade model for the temporal decrease of molecular weight, i.e. for the breaking of polymer chains is presented. Finally, a heuristic model spectrum is developed which covers the cases of both maximum and partial turbulence reduction by polymers.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76F05 Isotropic turbulence; homogeneous turbulence
76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1007/BF00854224 · doi:10.1007/BF00854224
[2] DOI: 10.1007/BF01535066 · doi:10.1007/BF01535066
[3] DOI: 10.1016/S0045-7930(01)00069-X · Zbl 1075.76556 · doi:10.1016/S0045-7930(01)00069-X
[4] DOI: 10.1038/35011019 · doi:10.1038/35011019
[5] DOI: 10.1021/i360036a016 · doi:10.1021/i360036a016
[6] DOI: 10.1017/S0022112005003666 · Zbl 1070.76030 · doi:10.1017/S0022112005003666
[7] DOI: 10.1016/0032-3861(80)90266-9 · doi:10.1016/0032-3861(80)90266-9
[8] DOI: 10.1063/1.869229 · doi:10.1063/1.869229
[9] DOI: 10.1016/j.jiec.2008.07.001 · doi:10.1016/j.jiec.2008.07.001
[10] DOI: 10.1038/206463a0 · doi:10.1038/206463a0
[11] DOI: 10.1017/S0022112099007818 · Zbl 0959.76005 · doi:10.1017/S0022112099007818
[12] DOI: 10.1209/epl/i2006-10222-6 · doi:10.1209/epl/i2006-10222-6
[13] DOI: 10.1017/S0022112070001763 · doi:10.1017/S0022112070001763
[14] DOI: 10.1122/1.2789945 · doi:10.1122/1.2789945
[15] DOI: 10.1103/PhysRevE.68.016308 · doi:10.1103/PhysRevE.68.016308
[16] DOI: 10.1063/1.1577563 · Zbl 1186.76175 · doi:10.1063/1.1577563
[17] DOI: 10.1080/00221688209499488 · doi:10.1080/00221688209499488
[18] DOI: 10.1038/2221160a0 · doi:10.1038/2221160a0
[19] DOI: 10.1088/0957-0233/15/6/003 · doi:10.1088/0957-0233/15/6/003
[20] DOI: 10.1017/S0022112097004850 · doi:10.1017/S0022112097004850
[21] DOI: 10.1063/1.1580480 · Zbl 1186.76451 · doi:10.1063/1.1580480
[22] DOI: 10.1103/PhysRevE.64.056301 · doi:10.1103/PhysRevE.64.056301
[23] Viscoelastic Properties of Polymers (1980)
[24] DOI: 10.1016/j.jnnfm.2007.02.006 · doi:10.1016/j.jnnfm.2007.02.006
[25] J. Non-Newtonian Fluid 81 pp 197– (1999) · Zbl 0948.76523 · doi:10.1016/S0377-0257(98)00098-6
[26] Particle Image Velocimetry: a Practical Guide (2007)
[27] DOI: 10.1007/BF00936835 · doi:10.1007/BF00936835
[28] Turbulent Flows (2008)
[29] DOI: 10.1007/s00348-005-0072-y · doi:10.1007/s00348-005-0072-y
[30] Ind. Engng Chem. 61 pp 22– (1969)
[31] DOI: 10.1017/S0022112009006697 · Zbl 1181.76012 · doi:10.1017/S0022112009006697
[32] DOI: 10.1002/polb.1986.090240901 · doi:10.1002/polb.1986.090240901
[33] Understanding Rheology (2001) · Zbl 1012.76500
[34] DOI: 10.1007/BF01993017 · doi:10.1007/BF01993017
[35] Exp. Fluids pp 1– (2011)
[36] DOI: 10.1063/1.861977 · doi:10.1063/1.861977
[37] The Physics of Fluid Turbulence (1990)
[38] J. Polym. Sci. Macrom. Rev. 7 pp 263– (1973)
[39] DOI: 10.1088/0022-3735/1/11/310 · doi:10.1088/0022-3735/1/11/310
[40] DOI: 10.1146/annurev.fl.01.010169.002055 · doi:10.1146/annurev.fl.01.010169.002055
[41] DOI: 10.1063/1.1711203 · Zbl 0117.42903 · doi:10.1063/1.1711203
[42] DOI: 10.1007/s00348-005-0016-6 · doi:10.1007/s00348-005-0016-6
[43] DOI: 10.1063/1.3097006 · Zbl 1183.76312 · doi:10.1063/1.3097006
[44] DOI: 10.1007/s00348-011-1070-x · doi:10.1007/s00348-011-1070-x
[45] DOI: 10.1007/s00348-007-0319-x · doi:10.1007/s00348-007-0319-x
[46] Flow Turbul. Combust. 78 pp 69– (2007)
[47] DOI: 10.1017/S0022112067001442 · doi:10.1017/S0022112067001442
[48] DOI: 10.1007/s003480050371 · doi:10.1007/s003480050371
[49] DOI: 10.1063/1.2397536 · Zbl 1146.76467 · doi:10.1063/1.2397536
[50] DOI: 10.1002/aic.690210402 · doi:10.1002/aic.690210402
[51] DOI: 10.1016/0377-0257(79)85027-2 · doi:10.1016/0377-0257(79)85027-2
[52] DOI: 10.1063/1.870100 · Zbl 1147.76547 · doi:10.1063/1.870100
[53] DOI: 10.1063/1.861735 · doi:10.1063/1.861735
[54] Proceedings of the First International Congress on Rheology, vol. 2 pp 135– (1948)
[55] DOI: 10.1016/0377-0257(94)80023-5 · doi:10.1016/0377-0257(94)80023-5
[56] DOI: 10.1063/1.2190469 · doi:10.1063/1.2190469
[57] A First Course in Turbulence (1972)
[58] DOI: 10.1088/1367-2630/6/1/029 · doi:10.1088/1367-2630/6/1/029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.