×

What is the simplest quantum field theory? (English) Zbl 1291.81356

Summary: Conventional wisdom says that the simpler the Lagrangian of a theory the simpler its perturbation theory. An ever-increasing understanding of the structure of scattering amplitudes has however been pointing to the opposite conclusion. At tree level, the BCFW recursion relations that completely determine the S-matrix are valid not for scalar theories but for gauge theories and gravity, with gravitational amplitudes exhibiting the best UV behavior at infinite complex momentum. At 1-loop, amplitudes in \(\mathcal{N} = 4\) SYM only have scalar box integrals, and it was recently conjectured that the same property holds for \(\mathcal{N} = 8\) SUGRA, which plays an important role in the suspicion that this theory may be finite. In this paper we explore and extend the S-matrix paradigm, and suggest that \(\mathcal{N} = 8\) SUGRA has the simplest scattering amplitudes in four dimensions. Labeling external states by supercharge eigenstates-Grassmann coherent states-allows the amplitudes to be exposed as completely smooth objects, with the action of SUSY manifest. We show that under the natural supersymmetric extension of the BCFW deformation of momenta, all tree amplitudes in \(\mathcal{N} = 4\) SYM and \(\mathcal{N} = 8\) SUGRA vanish at infinite complex momentum, and can therefore be determined by recursion relations. An important difference between \(\mathcal{N} = 8\) SUGRA and \(\mathcal{N} = 4\) SYM is that the massless S-matrix is defined everywhere on moduli space, and is acted on by a non-linearly realized \(E_{7(7)}\) symmetry. We elucidate how non-linearly realized symmetries are reflected in the more familiar setting of pion scattering amplitudes, and go on to identify the action of \(E_{7(7)}\) on amplitudes in \(\mathcal{N} = 8\) SUGRA. Moving beyond tree level, we give a simple general discussion of the structure of 1-loop amplitudes in any QFT, in close parallel to recent work of Forde, showing that the coefficients of scalar “triangle” and “bubble” integrals are determined by the “pole at infinite momentum” of products of tree amplitudes appearing in cuts. In \(\mathcal{N} = 4\) SYM and \(\mathcal{N} = 8\) SUGRA, the on-shell superspace makes it easy to compute the multiplet sums that arise in these cuts by relating them to the best behaved tree amplitudes of highest spin, leading to a straightforward proof of the absence of triangles and bubbles at 1-loop. We also argue that rational terms are absent. This establishes that 1-loop amplitudes in \(\mathcal{N} = 8\) SUGRA only have scalar box integrals. We give an explicit expression for 1-loop amplitudes for both \(\mathcal{N} = 4\) SYM and \(\mathcal{N} = 8\) SUGRA in terms of tree amplitudes that can be determined recursively. These amplitudes satisfy further relations in \(\mathcal{N} = 8\) SUGRA that are absent in \(\mathcal{N} = 4\) SYM. Since both tree and 1-loop amplitudes for maximally supersymmetric theories can be completely determined by their leading singularities, it is natural to conjecture that this property holds to all orders of perturbation theory. This is the nicest analytic structure amplitudes could possibly have, and if true, would directly imply the perturbative finiteness of \(\mathcal{N} = 8\) SUGRA. All these remarkable properties of scattering amplitudes call for an explanation in terms of a “weak-weak” dual formulation of QFT, a holographic dual of flat space.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
83E50 Supergravity
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81U20 \(S\)-matrix theory, etc. in quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81R30 Coherent states
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

Software:

CutTools; BlackHat
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] S. Weinberg, The quantum theory of fields. Vol. 1: Foundations, Cambridge University Press, Cambridge, U.K. (1995) pg. 609 [SPIRES].
[2] Parke, SJ; Taylor, TR, An amplitude for n gluon scattering, Phys. Rev. Lett., 56, 2459, (1986)
[3] Berends, FA; Giele, WT, Recursive calculations for processes with n gluons, Nucl. Phys., B 306, 759, (1988)
[4] Mangano, ML; Parke, SJ, Multi-parton amplitudes in gauge theories, Phys. Rept., 200, 301, (1991)
[5] L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [SPIRES].
[6] F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES].
[7] Bern, Z.; Dixon, LJ; Kosower, DA, On-shell methods in perturbative QCD, Annals Phys., 322, 1587, (2007)
[8] Cutkosky, RE, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys., 1, 429, (1960)
[9] Olive, DI, Exploration of S-matrix theory, Phys. Rev., 135, b745, (1964)
[10] G.F. Chew, The analytic S-matrix: A basis for nuclear democracy, W. A. Benjamin, Inc. (1966).
[11] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966).
[12] Goroff, MH; Sagnotti, A., The ultraviolet behavior of Einstein gravity, Nucl. Phys., B 266, 709, (1986)
[13] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189, (2004)
[14] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005)
[15] Bern, Z.; Dixon, LJ; Kosower, DA, On-shell methods in perturbative QCD, Annals Phys., 322, 1587, (2007)
[16] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602, (2005)
[17] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys., B 715, 499, (2005)
[18] Bedford, J.; Brandhuber, A.; Spence, BJ; Travaglini, G., A recursion relation for gravity amplitudes, Nucl. Phys., B 721, 98, (2005)
[19] F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [SPIRES].
[20] Benincasa, P.; Boucher-Veronneau, C.; Cachazo, F., Taming tree amplitudes in general relativity, JHEP, 11, 057, (2007)
[21] Arkani-Hamed, N.; Kaplan, J., On tree amplitudes in gauge theory and gravity, JHEP, 04, 076, (2008)
[22] Chalmers, G.; Siegel, W., Simplifying algebra in Feynman graphs. II: spinor helicity from the spacecone, Phys. Rev., D 59, 045013, (1999)
[23] Kawai, H.; Lewellen, DC; Tye, SHH, A relation between tree amplitudes of closed and open strings, Nucl. Phys., B 269, 1, (1986)
[24] Cheung, C., On-shell recursion relations for generic theories, JHEP, 03, 098, (2010)
[25] The use of this fact for the computation of scattering amplitudes goes back to: F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett.B 103 (1981) 124 [SPIRES].
[26] Causmaecker, P.; Gastmans, R.; Troost, W.; Wu, TT, Multiple bremsstrahlung in gauge theories at high-energies. 1. general formalism for quantum electrodynamics, Nucl. Phys., B 206, 53, (1982)
[27] Kleiss, R.; Stirling, WJ, Spinor techniques for calculating \( p\bar{p} → {{{{W^± }}} \left/ {{Z0}} \right.} \) + jets, Nucl. Phys., B 262, 235, (1985)
[28] Xu, Z.; Zhang, D-H; Chang, L., Helicity amplitudes for multiple bremsstrahlung in massless nonabelian gauge theories, Nucl. Phys., B 291, 392, (1987)
[29] Gunion, JF; Kunszt, Z., Improved analytic techniques for tree graph calculations and the \( Ggq\bar{q} \) lepton anti-lepton subprocess, Phys. Lett., B 161, 333, (1985)
[30] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[31] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys., B 435, 59, (1995)
[32] Bern, Z.; Morgan, AG, Massive loop amplitudes from unitarity, Nucl. Phys., B 467, 479, (1996)
[33] Bern, Z.; Dixon, LJ; Kosower, DA, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci., 46, 109, (1996)
[34] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett., B 394, 105, (1997)
[35] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[36] Bern, Z.; Dixon, LJ; Kosower, DA, Two-loop g → gg splitting amplitudes in QCD, JHEP, 08, 012, (2004)
[37] Maldacena, JM, The large-\(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231, (1998)
[38] Alday, LF; Maldacena, JM, Gluon scattering amplitudes at strong coupling, JHEP, 06, 064, (2007)
[39] Drummond, JM; Korchemsky, GP; Sokatchev, E., Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys., B 795, 385, (2008)
[40] Brandhuber, A.; Heslop, P.; Travaglini, G., MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys., B 794, 231, (2008)
[41] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., On planar gluon amplitudes/Wilson loops duality, Nucl. Phys., B 795, 52, (2008)
[42] Bern, Z.; etal., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev., D 78, 045007, (2008)
[43] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys., B 815, 142, (2009)
[44] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys., B 828, 317, (2010)
[45] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [SPIRES].
[46] Bjerrum-Bohr, NEJ; Dunbar, DC; Ita, H.; Perkins, WB; Risager, K., The no-triangle hypothesis for N = 8 supergravity, JHEP, 12, 072, (2006)
[47] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multi-leg one-loop gravity amplitudes from gauge theory, Nucl. Phys., B 546, 423, (1999)
[48] Bern, Z.; Bjerrum-Bohr, NEJ; Dunbar, DC, Inherited twistor-space structure of gravity loop amplitudes, JHEP, 05, 056, (2005)
[49] Bern, Z.; etal., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett., 98, 161303, (2007)
[50] Bern, Z.; Dixon, LJ; Roiban, R., Is N = 8 supergravity ultraviolet finite?, Phys. Lett., B 644, 265, (2007)
[51] Green, MB; Russo, JG; Vanhove, P., Non-renormalisation conditions in type-II string theory and maximal supergravity, JHEP, 02, 099, (2007)
[52] Green, MB; Russo, JG; Vanhove, P., Ultraviolet properties of maximal supergravity, Phys. Rev. Lett., 98, 131602, (2007)
[53] Berkovits, N., New higher-derivative \(R\)\^{}{4} theorems, Phys. Rev. Lett., 98, 211601, (2007)
[54] Brandhuber, A.; Heslop, P.; Travaglini, G., A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev., D 78, 125005, (2008)
[55] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[56] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[57] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys., B 822, 270, (2009)
[58] Badger, SD, Direct extraction of one loop rational terms, JHEP, 01, 049, (2009)
[59] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[60] Mastrolia, P.; Ossola, G.; Papadopoulos, CG; Pittau, R., Optimizing the reduction of one-loop amplitudes, JHEP, 06, 030, (2008)
[61] Mastrolia, P., On triple-cut of scattering amplitudes, Phys. Lett., B 644, 272, (2007)
[62] Bjerrum-Bohr, NEJ; Vanhove, P., Absence of triangles in maximal supergravity amplitudes, JHEP, 10, 006, (2008)
[63] Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected cancellations in gravity theories, arXiv:0707.1035 [SPIRES].
[64] Nair, VP, A current algebra for some gauge theory amplitudes, Phys. Lett., B 214, 215, (1988)
[65] Mandelstam, S., Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys., B 213, 149, (1983)
[66] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189, (2004)
[67] Bianchi, M.; Elvang, H.; Freedman, DZ, Generating tree amplitudes in N = 4 SYM and N = 8 SG, JHEP, 09, 063, (2008)
[68] Goroff, MH; Sagnotti, A., The ultraviolet behavior of Einstein gravity, Nucl. Phys., B 266, 709, (1986)
[69] Roiban, R.; Spradlin, M.; Volovich, A., Dissolving N = 4 loop amplitudes into QCD tree amplitudes, Phys. Rev. Lett., 94, 102002, (2005)
[70] Cremmer, E.; Julia, B., The N = 8 supergravity theory. 1. the Lagrangian, Phys. Lett., B 80, 48, (1978)
[71] Cremmer, E.; Julia, B.; Scherk, J., Supergravity theory in 11 dimensions, Phys. Lett., B 76, 409, (1978)
[72] Cremmer, E.; Julia, B., The SO(8) supergravity, Nucl. Phys., B 159, 141, (1979)
[73] Gaillard, MK; Zumino, B., Duality rotations for interacting fields, Nucl. Phys., B 193, 221, (1981)
[74] Wit, B.; Nicolai, H., N= 8 supergravity, Nucl. Phys., B 208, 323, (1982)
[75] Wit, B.; Freedman, DZ, On SO(8) extended supergravity, Nucl. Phys., B 130, 105, (1977)
[76] Kallosh, R.; Soroush, M., Explicit action of \(E\)_{7(7)} on N = 8 supergravity fields, Nucl. Phys., B 801, 25, (2008)
[77] Brink, L.; Kim, S-S; Ramond, P., \(E\)_{7(7)} on the light cone, JHEP, 06, 034, (2008)
[78] Adler, SL, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev., 137, b1022, (1965)
[79] Weinberg, S., Pion scattering lengths, Phys. Rev. Lett., 17, 616, (1966)
[80] Susskind, L.; Frye, G., Algebraic aspects of pionic duality diagrams, Phys. Rev., D1, 1682, (1970)
[81] Weinberg, S., Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev., 135, b1049, (1964)
[82] Berkovits, N.; Maldacena, J., Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP, 09, 062, (2008)
[83] Bern, Z.; Carrasco, JJM; Johansson, H., New relations for gauge-theory amplitudes, Phys. Rev., D 78, 085011, (2008)
[84] Passarino, G.; Veltman, MJG, One loop corrections for \(e\)\^{}{+}\(e\)\^{}{−} annihilation into \(μ\)\^{}{+}\(μ\)\^{}{−} in the Weinberg model, Nucl. Phys., B 160, 151, (1979)
[85] Neerven, WL; Vermaseren, JAM, Large loop integrals, Phys. Lett., B 137, 241, (1984)
[86] Bern, Z.; Dixon, LJ; Kosower, DA, Dimensionally regulated pentagon integrals, Nucl. Phys., B 412, 751, (1994)
[87] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005)
[88] Bern, Z.; Kosower, DA, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett., 66, 1669, (1991)
[89] Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J., A duality for the S matrix, July (2009) pg. 77, JHEP, 03, 020, (2010)
[90] L. Dixon, private communication, unpublished.
[91] Green, MB; Schwarz, JH; Brink, L., N= 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys., B 198, 474, (1982)
[92] Bern, Z.; Chalmers, G., Factorization in one loop gauge theory, Nucl. Phys., B 447, 465, (1995)
[93] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics, Volume 211, Springer-Verlag (2004).
[94] Kotikov, AV; Lipatov, LN; Onishchenko, AI; Velizhanin, VN, Three-loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett., B 595, 521, (2004)
[95] Chudnovsky, GV, No article title, J. Math. Pure A ppl., 58, 445, (1999)
[96] Lewin, L., The inner structure of the dilog-arithm in algebraic fields, J. Number Theor., 19, 345, (1984)
[97] Buchbinder, EI; Cachazo, F., Two-loop amplitudes of gluons and octa-cuts in N = 4 super Yang-Mills, JHEP, 11, 036, (2005)
[98] Bern, Z.; Carrasco, JJM; Johansson, H.; Kosower, DA, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev., D 76, 125020, (2007)
[99] F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [SPIRES].
[100] F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [SPIRES].
[101] Cachazo, F.; Spradlin, M.; Volovich, A., Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev., D 78, 105022, (2008)
[102] Spradlin, M.; Volovich, A.; Wen, C., Three-loop leading singularities and BDS ansatz for five particles, Phys. Rev., D 78, 085025, (2008)
[103] Banks, T.; Zaks, A., On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys., B 196, 189, (1982)
[104] Green, MB; Ooguri, H.; Schwarz, JH, Decoupling supergravity from the superstring, Phys. Rev. Lett., 99, 041601, (2007)
[105] Brink, L.; Schwarz, JH; Scherk, J., Supersymmetric Yang-Mills theories, Nucl. Phys., B 121, 77, (1977)
[106] Susskind, L.; Thorlacius, L.; Uglum, J., The stretched horizon and black hole complementarity, Phys. Rev., D 48, 3743, (1993)
[107] Beisert, N.; Kristjansen, C.; Staudacher, M., The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys., B 664, 131, (2003)
[108] Arkani-Hamed, N.; Dubovsky, S.; Nicolis, A.; Trincherini, E.; Villadoro, G., A measure of de Sitter entropy and eternal inflation, JHEP, 05, 055, (2007)
[109] Penrose, R.; MacCallum, MAH, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rept., 6, 241, (1972)
[110] Boels, R.; Mason, L.; Skinner, D., Supersymmetric gauge theories in twistor space, JHEP, 02, 014, (2007)
[111] Cachazo, F.; Svrček, P.; Witten, E., MHV vertices and tree amplitudes in gauge theory, JHEP, 09, 006, (2004)
[112] Britto, R.; Buchbinder, E.; Cachazo, F.; Feng, B., One-loop amplitudes of gluons in SQCD, Phys. Rev., D 72, 065012, (2005)
[113] Britto, R.; Feng, B.; Mastrolia, P., The cut-constructible part of QCD amplitudes, Phys. Rev., D 73, 105004, (2006)
[114] Bern, Z.; Dixon, LJ; Kosower, DA, Progress in one-loop QCD computations, Ann. Rev. Nucl. Part. Sci., 46, 109, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.