zbMATH — the first resource for mathematics

Estimation of \(P(Y<X)\) for the three-parameter generalized exponential distribution. (English) Zbl 1292.62041
Summary: This article considers the estimation of \(R=P(Y<X)\) when \(X\) and \(Y\) are distributed as two independent three-parameter generalized exponential (GE) random variables with different shape parameters but having the same location and scale parameters. A modified maximum likelihood method and a Bayesian technique are used to estimate \(R\) on the basis of independent complete samples. The Bayes estimator cannot be obtained in explicit form, and therefore it has been determined using an importance sampling procedure. An analysis of a real life data set is presented for illustrative purposes.

62F10 Point estimation
62F15 Bayesian inference
62G30 Order statistics; empirical distribution functions
62F25 Parametric tolerance and confidence regions
Full Text: DOI
[1] DOI: 10.1080/03610928108828206
[2] Badar , M. G. , Priest , A. M. ( 1982 ).Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi , T. , Kawata , K. , Umekawa , S. , eds. Tokyo: ICCM-IV , pp. 1129 – 1136 .
[3] DOI: 10.2307/1390921
[4] Efron B., The Jackknife, Bootstrap and other Re-sampling Plans (1982) · Zbl 0496.62036
[5] DOI: 10.1111/1467-842X.00072 · Zbl 1007.62503
[6] DOI: 10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R · Zbl 0997.62076
[7] DOI: 10.1080/00949650108812098 · Zbl 1007.62011
[8] DOI: 10.1081/STA-120018835
[9] DOI: 10.1007/s001840400345 · Zbl 1079.62032
[10] DOI: 10.1142/9789812564511
[11] Press W. H., Numerical Recipes: The Art of Scientific Computing (1991)
[12] DOI: 10.1016/S0378-3758(01)00246-4 · Zbl 0992.62013
[13] DOI: 10.1080/00949650108812085 · Zbl 1151.62309
[14] DOI: 10.1081/SAC-200055741 · Zbl 1065.62172
[15] Surles J. G., J. Appl. Statist. Sci. 5 pp 225– (1998)
[16] DOI: 10.1023/A:1011352923990 · Zbl 0984.62082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.