Identifiability of cure models revisited. (English) Zbl 1292.62134

Summary: We obtained results on identifiability of mixture, mixture proportional hazards and bounded cumulative hazards (or Yakovlev) models of survival in the presence of cured (or non-susceptible) subpopulation. These results specify conditions under which model parameters can, or cannot, be estimated from the observed potentially censored survival times and thus may guide statistical modeling. The results are formulated for larger classes of models and in greater generality than previously and correct some misconceptions that exist in statistical literature on the subject. All results are supplied with rigorous self-contained proofs.


62N02 Estimation in survival analysis and censored data
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI


[1] Berkson, J.; Gage, R. P., Survival curves for cancer patients following treatment, J. Amer. Statist. Assoc., 47, 501-515, (1952)
[2] Boag, J. M., Maximum likelihood estimates of the proportions of patients cured by cancer therapy, J. R. Stat. Soc. Ser. B, 11, 15-53, (1949) · Zbl 0034.08001
[3] Chen, M. H.; Ibrahim, J. G.; Sinha, D., A new Bayesian model for survival data with a surviving fraction, J. Amer. Statist. Assoc., 94, 909-919, (1999) · Zbl 0996.62019
[4] Cooner, F.; Banerjee, S.; Carlin, B. P.; Sinha, D., Flexible cure rate modeling under latent activation schemes, J. Amer. Statist. Assoc., 102, 560-572, (2007) · Zbl 1172.62331
[5] Farewell, V. T., The use of mixture models for the analysis of survival data with long-term survivors, Biometrics, 38, 1041-1046, (1982)
[6] Hanin, L. G., Identification problem for stochastic models with application to carcinogenesis, cancer detection and radiation biology, Discrete Dyn. Nat. Soc., 7, 177-189, (2002) · Zbl 1061.92035
[7] Kuk, A. Y.C.; Chen, C.-H., A mixture model combining logistic regression with proportional hazards regression, Biometrika, 79, 531-541, (1992) · Zbl 0775.62300
[8] Li, C.-S.; Taylor, J. M.G.; Sy, J. P., Identifiability of cure models, Statist. Probab. Lett., 54, 389-395, (2001) · Zbl 0999.62075
[9] Lu, W.; Ying, Z., On semiparametric transformation cure models, Biometrika, 91, 331-343, (2004) · Zbl 1079.62115
[10] Ma, Y.; Yin, G., Cure rate model with mismeasured covariates under transformation, J. Amer. Statist. Assoc., 103, 743-756, (2008) · Zbl 1471.62511
[11] Maller, R. A.; Zhou, S., Survival analysis with long-term survivors, (1996), Wiley Chichester, UK · Zbl 1151.62350
[12] Mao, M.; Wang, J.-L., Semiparametric efficient estimation for a class of generalized proportional odds cure models, J. Amer. Statist. Assoc., 105, 302-311, (2010) · Zbl 1397.62132
[13] Peng, Y.; Dear, K. B.G., A nonparametric mixture model for cure rate estimation, Biometrics, 56, 237-243, (2000) · Zbl 1060.62651
[14] Peng, Y.; Zhang, J., Identifiability of a mixture cure frailty model, Statist. Probab. Lett., 78, 2604-2608, (2008) · Zbl 1256.62060
[15] Sy, J. P.; Taylor, J. M.G., Estimation in a Cox proportional hazards cure model, Biometrics, 56, 227-236, (2000) · Zbl 1060.62670
[16] Taylor, J. M.G., Semi-parametric estimation in failure time mixture models, Biometrics, 51, 899-907, (1995) · Zbl 0875.62493
[17] Tournoud, M.; Ecochard, R., Promotion time models with time-changing exposure and heterogeneity: application to infectious diseases, Biom. J., 50, 395-407, (2008)
[18] Tsodikov, A. D.; Ibrahim, J. G.; Yakovlev, A. Y., Estimating cure rates from survival data: an alternative to two-component mixture models, J. Amer. Statist. Assoc., 98, 1063-1078, (2003)
[19] Yakovlev, A. Y., Letter to the editor, Stat. Med., 13, 983-986, (1994)
[20] Yakovlev, A. Y.; Asselain, B.; Bardou, V.-J.; Fourquet, A.; Hoang, T.; Rochefordière, A.; Tsodikov, A. D., A simple stochastic model of tumor recurrence and its application to data on premenopausal breast cancer, (Asselain, B.; Boniface, M.; Duby, C.; Lopez, C.; Masson, J.-P.; Tranchefort, J., Biométrie et Analyse de Données Spatio-Temporelles, Vol. 12, (1993), Société Française de Biométrie, ENSA Rennes, France), 66-82
[21] Yakovlev, A. Y.; Tsodikov, A. D., Stochastic models of tumor latency and their biostatistical applications, (1996), World Scientific Singapore · Zbl 0919.92024
[22] Yu, M.; Taylor, J. M.G.; Sandler, H., Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model, J. Amer. Statist. Assoc., 103, 178-187, (2008) · Zbl 1469.62383
[23] Zeng, D.; Yin, G.; Ibrahim, J. G., Semiparametric transformation models for survival data with a cure fraction, J. Amer. Statist. Assoc., 101, 670-684, (2006) · Zbl 1119.62381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.