×

zbMATH — the first resource for mathematics

Effects of Hall current on MHD Couette flow in a channel partially filled with a porous medium in a rotating system. (English) Zbl 1293.76166
Summary: MHD Couette flow in a channel with non-conducting walls, partially filled with a porous medium, is investigated in the presence of an inclined magnetic field in a rotating system. It is observed that the MHD flow behaviour in the channel has been influenced significantly by the Coriolis force, the hydromagnetic force with an inclusion of Hall current and the permeability of the porous medium. Effects of the parameters of these forces on the velocity distributions, induced magnetic field distributions and the skin friction have been depicted graphically and discussed.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rudraiah N, Ramaiah BK, Rajasekhar BM (1975) Hartmann flow over a permeable bed. Int J Eng Sci 13(1):1–24 · Zbl 0294.76077 · doi:10.1016/0020-7225(75)90070-1
[2] McWhirter JD, Crawford ME, Klein DE, Sanders TL (1998) Model for inertialess magnetohydrodynamic flow in packed beds. Fus Technol 33(1):22–30
[3] McWhirter JD, Crawford ME, Klein DE (1998) Magnetohydrodynamic flows in porous media II: experimental results. Fus Technol 34:187–197
[4] Krishna DV, Prasada Rao DRV, Ramachandra Murthy AS (2002) Hydromagnetic convection flow through a porous medium in a rotating channel. J Eng Phys Thermophys 75(2):281–291 · doi:10.1023/A:1015668916751
[5] Geindreau C, Auriault JL (2002) Magnetohydrodynamic flows in porous media. J Fluid Mech 466:343–363 · Zbl 1023.76049 · doi:10.1017/S0022112002001404
[6] Chauhan DS, Jain R (2005) Three dimensional MHD steady flow of a viscous incompressible fluid over a highly porous layer. Model Meas Control B 74(5):19–34
[7] Pal D (2008) MHD flow and heat transfer past a semi-infinite vertical plate embedded in a porous medium of variable permeability. Int J Fluid Mech Res 35(6):493–509 · doi:10.1615/InterJFluidMechRes.v35.i6.10
[8] Sutton GW, Sherman A (1965) Engineering magnetohydrodynamics. McGraw-Hill, New York
[9] Sherman A, Sutton GW (1962) Magnetohydrodynamics. North Western Univ Press, Evanston
[10] Soundalgekar VM, Vighnesam NV, Takhar HS (1979) Hall and ion-slip effects in MHD Couette flow with heat transfer. IEEE Trans Plasma Sci PS-7(3):178–182 · doi:10.1109/TPS.1979.4317226
[11] Seth GS, Jana RN, Maiti MK (1982) Unsteady hydromagnetic Couette flow in a rotating system. Int J Eng Sci 20(9):989–999 · Zbl 0599.76135 · doi:10.1016/0020-7225(82)90034-9
[12] Soundalgekar VM, Uplekar AG (1986) Hall effects in MHD Couette with heat transfer. IEEE Trans Plasma Sci PS-14(5):579–583 · doi:10.1109/TPS.1986.4316600
[13] Attia HA (2005) MHD Couette flow with temperature dependent viscosity and the ion slip. Tamkang J Sci Eng 8(1):11–16
[14] Jana RN, Datta N (1977) Couette flow and heat transfer in a rotating system. Acta Mech 26:301–306 · doi:10.1007/BF01177152
[15] Mandal G, Mandal KK (1983) Effect of Hall current on MHD Couette flow between thick arbitrarily conducting plates in a rotating system. J Phys Soc Jpn 52:470–477 · doi:10.1143/JPSJ.52.470
[16] Singh AK, Sacheti NC, Chandran P (1994) Transient effects on magnetohydrodynamic Couette flow with rotation: accelerated motion. Int J Eng Sci 32(1):133–139 · Zbl 0794.76097 · doi:10.1016/0020-7225(94)90155-4
[17] Hayat T, Nadeem S, Asghar S (2004) Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system. Int J Eng Sci 42(1):65–78 · Zbl 1211.76144 · doi:10.1016/S0020-7225(03)00277-5
[18] Ghosh SK (2002) Effects of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field. Czech J Phys 52(1):51–63 · doi:10.1023/A:1013913730086
[19] Guria M, Jana RN, Ghosh SK (2006) Unsteady Couette flow in a rotating system. Int J Non-Linear Mech 41:838–843 · doi:10.1016/j.ijnonlinmec.2006.04.010
[20] Das BK, Guria M, Jana RN (2008) Unsteady Couette flow in a rotating system. Meccanica 43:517–521 · Zbl 1163.76440 · doi:10.1007/s11012-008-9130-x
[21] Ghosh SK, Bég OA, Narahari M (2009) Hall effects on MHD flow in a rotating system with heat transfer characteristics. Meccanica 44:741–765 · Zbl 1258.76197 · doi:10.1007/s11012-009-9210-6
[22] Seth GS, Nandkeolyar R, Mahto N, Singh SK (2009) MHD Couette flow in a rotating system in the presence of an inclined magnetic field. Appl Math Sci 3(59):2919–2932 · Zbl 1425.76311
[23] Guria M, Das S, Jana RN, Ghosh SK (2009) Oscillatory Couette flow in the presence of an inclined magnetic field. Meccanica 44:555–564 · Zbl 1258.76202 · doi:10.1007/s11012-009-9195-1
[24] Bég OA, Takhar HS, Zueco J, Sajid A, Bhargava R (2008) Transient Couette flow in a rotating non-Darcian porous medium parallel plate configuration: network simulation method solutions. Acta Mech 200:129–144 · Zbl 1155.76415 · doi:10.1007/s00707-008-0040-8
[25] Chauhan DS, Rastogi P (2009) Hall current and heat transfer effects on MHD flow in a channel partially filled with a porous medium in a rotating system. Turk J Eng Environ Sci 33:167–184
[26] Chauhan DS, Agrawal R (2010) Effects of Hall current on MHD flow in a rotating channel partially filled with a porous medium. Chem Eng Commun 197(6):830–845 · doi:10.1080/00986440903359061
[27] Bég OA, Sim L, Zueco J, Bhargava R (2010) Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence. Commun Nonlinear Sci Numer Simul 15:345–359 · Zbl 1221.76139 · doi:10.1016/j.cnsns.2009.04.008
[28] Cowling TG (1957) Magnetohydrodynamics. Interscience, New York
[29] Sato H (1961) The Hall effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field. J Phys Soc Jpn 16:1427–1435 · Zbl 0112.42504 · doi:10.1143/JPSJ.16.1427
[30] Tillack MS, Morley NB (1998) Magnetohydrodynamics. Standard handbook for electrical engineers, 14th edn. McGraw-Hill, New York
[31] Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207 · doi:10.1017/S0022112067001375
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.