×

zbMATH — the first resource for mathematics

Regularization parameter determination for discrete ill-posed problems. (English) Zbl 1295.65046
Summary: The straightforward solution of discrete ill-posed linear systems of equations or least-squares problems with error contaminated data does not, in general, give meaningful results, because the propagated error destroys the computed solution. The problems have to be modified to reduce their sensitivity to the error in the data. The amount of modification is determined by a regularization parameter. It can be difficult to determine a suitable value of the regularization parameter when no knowledge of the norm of error in the data is available. This paper proposes a new simple technique for determining a value of the regularization parameter that can be applied in this situation. It is based on comparing computed solutions determined by Tikhonov regularization and truncated singular value decomposition. Analogous comparisons are proposed for large-scale problems. The technique for determining the regularization parameter implicity provides an estimate for the norm of the error in the data.

MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
65F20 Numerical solutions to overdetermined systems, pseudoinverses
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of inverse problems, (1996), Kluwer Dordrecht · Zbl 0859.65054
[2] Hansen, P. C., Rank-deficient and discrete ill-posed problems, (1998), SIAM Philadelphia
[3] Bauer, F.; Lukas, M. A., Comparing parameter choice methods for regularization of ill-posed problem, Math. Comput. Simul., 81, 1795-1841, (2011) · Zbl 1220.65063
[4] Brezinski, C.; Rodriguez, G.; Seatzu, S., Error estimates for the regularization of least squares problems, Numer. Algorithms, 51, 61-76, (2009) · Zbl 1166.65331
[5] Regińska, T., A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput., 17, 740-749, (1996) · Zbl 0865.65023
[6] Reichel, L.; Rodriguez, G., Old and new parameter choice rules for discrete ill-posed problems, Numer. Algorithms, 63, 65-87, (2013) · Zbl 1267.65045
[7] Reichel, L.; Rodriguez, G.; Seatzu, S., Error estimates for large-scale ill-posed problems, Numer. Algorithms, 51, 341-361, (2009) · Zbl 1166.65332
[8] Kindermann, S., Convergence analysis of minimization-based noise-level-free parameter choice rules for ill-posed problems, Electron. Trans. Numer. Anal., 38, 233-257, (2011) · Zbl 1287.65043
[9] Varah, J. M., Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci. Stat. Comput., 4, 164-176, (1983) · Zbl 0533.65082
[10] Hansen, P. C., Deconvolution and regularization with Toeplitz matrices, Numer. Algorithms, 46, 323-378, (2002) · Zbl 1002.65145
[11] Delves, L. M.; Mohammed, J. L., Computational methods for integral equations, (1985), Cambridge University Press Cambridge · Zbl 0592.65093
[12] Baart, M. L., The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems, IMA J. Numer. Anal., 2, 241-247, (1982) · Zbl 0484.65021
[13] Golub, G. H.; Van Loan, C. F., Matrix computations, (1996), Johns Hopkins University Press Baltimore · Zbl 0865.65009
[14] Paige, C. C.; Saunders, M. A., LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8, 43-71, (1982) · Zbl 0478.65016
[15] Calvetti, D.; Golub, G. H.; Reichel, L., Estimation of the L-curve via Lanczos bidiagonalization, BIT, 39, 603-619, (1999) · Zbl 0945.65044
[16] Baglama, J.; Reichel, L., Augmented implicitly restarted Lanczos bidiagonalization methods, SIAM J. Sci. Comput., 27, 19-42, (2005) · Zbl 1087.65039
[17] Hansen, P. C.; Jensen, T. K.; Rodriguez, G., An adaptive pruning algorithm for the discrete L-curve criterion, J. Comput. Appl. Math., 198, 483-492, (2006) · Zbl 1101.65044
[18] Reichel, L.; Sadok, H., A new L-curve for ill-posed problems, J. Comput. Appl. Math., 219, 493-508, (2008) · Zbl 1145.65035
[19] Calvetti, D.; Lewis, B.; Reichel, L., GMRES, L-curves, and discrete ill-posed problems, BIT, 42, 44-65, (2002) · Zbl 1003.65040
[20] Hansen, P. C., Analysis of the discrete ill-posed problems by means of the L-curve, SIAM Rev., 34, 561-580, (1992) · Zbl 0770.65026
[21] Castellanos, J. L.; Gómez, S.; Guerra, V., The triangle method for finding the corner of the L-curve, Appl. Numer. Math., 43, 359-373, (2002) · Zbl 1014.65022
[22] Hnětynková, I.; Plešinger, M.; Strakoš, Z., The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data, BIT, 49, 669-696, (2009) · Zbl 1184.65044
[23] Varah, J. M., The prolate matrix, Linear Algebra Appl., 187, 269-278, (1993) · Zbl 0782.15014
[24] Redivo-Zaglia, M.; Rodriguez, G., : a MATLAB toolbox for structured matrices, Numer. Algorithms, 59, 639-659, (2012) · Zbl 1238.65036
[25] Hansen, P. C., Regularization tools version 4.0 for MATLAB 7.3, Numer. Algorithms, 46, 189-194, (2007) · Zbl 1128.65029
[26] Golub, G. H.; von Matt, U., Generalized cross-validation for large-scale problems, J. Comput. Graph. Statist., 6, 1-34, (1997)
[27] J.D. McNeill, Electromagnetic terrain conductivity measurement at low induction numbers, Technical Report TN-6, Geonics Limited, Mississauga, Ontario, Canada, 1980.
[28] Borchers, B.; Uram, T.; Hendrickx, J. M.H., Tikhonov regularization of electrical conductivity depth profiles in field soils, Soil Sci. Soc. Am. J., 61, 1004-1009, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.