×

The poroelastic role of water in cell walls of the hierarchical composite “softwood”. (English) Zbl 1295.74009

Summary: Wood is an anisotropic, hierarchically organized material, and the question how the hierarchical organization governs the anisotropy of its mechanical properties (such as stiffness and strength) has kept researchers busy for decades. While the honeycomb structure of softwood or the chemical composition of the cell wall has been fairly well established, the mechanical role of the cell wall water is less understood. The question arises how its capability to carry compressive loads (but not tensile loads) and its pressurization state affect mechanical deformations of the hierarchical composite “wood”. By extending the framework of poro-micromechanics to more than two material phases, we here provide corresponding answers from a novel hierarchical set of matrix-inclusion problems with eigenstresses: (i) Biot tensors, expressing how much of the cell wall water-induced pore pressure is transferred to the boundary of an overall deformation-free representative volume element (RVE), and (ii) Biot moduli, expressing the porosity changes invoked by a pore pressure within such an RVE, are reported as functions of the material’s composition, in particular of its water content and its lumen space. At the level of softwood, where we transform a periodic homogenization scheme into an equivalent matrix-inclusion problem, all Biot tensor components are found to increase with decreasing lumen volume fraction. A further research finding concerns the strong anisotropy of the Biot tensor with respect to the water content: Transverse components increase with increasing water content, while the relationship “longitudinal Biot tensor component versus volume fraction of water within the wood cell wall” exhibits a maximum, representing a trade-off between pore pressure increase (increasing the longitudinal Biot tensor component, dominantly at low water content) and softening of the cell wall (reducing this component, dominantly at high water contents). Soft cell wall matrices reinforced with very stiff cellulose fibers may even result in negative longitudinal Biot tensor components. The aforementioned maximum effect is also noted for the Biot modulus.

MSC:

74A60 Micromechanical theories
74E10 Anisotropy in solid mechanics
74N15 Analysis of microstructure in solids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Auriault J.L., Sanchez-Palencia E.: Etude du comportement macroscopique d’un milieu poreux saturè dèformable [study of macroscopic behavior of a saturated deformable medium]. J. de Mé 16, 575–603 (1977) in French · Zbl 0382.73013
[2] Benveniste Y.: A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)
[3] Böhm H.: A short introduction to continuum micromechanics. In: Böhm, H. (eds) Mechanics of Microstructure Materials. CISM Lecture Notes No. 464, pp. 1–40. Springer, New York (2004) · Zbl 1100.74005
[4] Böhm H., Han W., Eckschlager A.: Multi-inclusion unit cell studies of reinforcement stresses and particle failure in discontinuously reinforced ductile matrix composites. Comput. Meth. Eng. Sci. 5(1), 5–20 (2004) · Zbl 1090.74552
[5] Cecchi A., Sab K.: Out of plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A Solids 21(5), 715–746 (2002) · Zbl 1146.74312
[6] Chateau X., Dormieux L.: Approche microméchanique du comportement d’un milieu poreux non saturé [Micromechanical approach for the behavior of a non-saturated porous medium]. Comptes Rendus de l’Académie des Sciences Série IIb 326, 533–538 (1998) in French · Zbl 0961.74053
[7] Chateau X., Dormieux L.: Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Meth. Geomech. 26, 831–844 (2002) · Zbl 1016.74021
[8] Cousins W.: Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. 10, 9–17 (1976)
[9] Cousins W.: Young’s modulus of hemicellulose as related to moisture content. Wood Sci. Technol. 12, 161–167 (1978)
[10] Cousins W., Armstrong R., Robinson W.: Young’s modulus of lignin from a continuous indentation test. J. Mater. Sci. 10, 1655–1658 (1975)
[11] Coussy O.: Poromechanics. Wiley, Chistester (2004)
[12] Da Silva A., Kyriakides S.: Compressive response and failure of balsa wood. Int. J. Solids Struct. 44, 8685–8717 (2007) · Zbl 1167.74307
[13] Dormieux L., Kondo D., Ulm F.J.: Microporomechanics. Wiley, Chichester (2006)
[14] Dormieux, L., Ulm, F.J. (eds.): Applied Micromechanics of Porous Materials (CISM Courses and Lectures No. 480), Springer, Wien, New York (2004)
[15] Dormieux L., Molinari A., Kondo D.: Micromechanical approach to the behavior of poroelastic materials. J. Mech. Phys. Solids 50, 2203–2231 (2004) · Zbl 1151.74346
[16] Dvorak G.J., Benveniste Y.: Transformation field analysis of inelastic composite materials. Proc. Royal Soc. Lond. A 437, 291–310 (1992) · Zbl 0748.73003
[17] Easterling K., Harryson R., Gibson L., Ashby M.: On the mechanics of balsa and other woods. Proc. Royal Soc. Lond. A 383, 31–41 (1982)
[18] Eichhorn S., Young R.: The Young’s modulus of a microcrystalline cellulose. Cellulose 8, 197–207 (2001)
[19] Eshelby J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. Lond. A 241, 376–396 (1957) · Zbl 0079.39606
[20] Fengel D., Wegener G., Wood G.: Wood–Chemistry, Ultrastructure, Reactions. 2nd edn. De Gruyter, Berlin (1984)
[21] Friebel C., Doghri L., Legat V.: General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions. Int. J. Solids Struct. 43(9), 2513–2541 (2006) · Zbl 1120.74719
[22] Fritsch A., Hellmich C., Dormieux L.: Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: Experimentally supported micromechanical explanation of bone strength. J. Theor. Biol. 260, 230–252 (2009) · Zbl 1402.92035
[23] Gibson L., Ashby M.: Cellular Solids, Structure and Properties. 2nd edn. Cambridge University Press, Cambridge (1997) · Zbl 0723.73004
[24] Gillis P.P.: Orthotropic elastic constants of wood. Wood Sci. Technol. 6, 138–156 (1972)
[25] Harada H.: Cellular ultrastructure of woody plants. In: Côté, W. (eds) Ultrastructure and organization of gymnosprem cell walls, pp. 215–233. Syracuse University Press, Syracuse (1965)
[26] Hashin Z., Rosen B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)
[27] Hellmich C., Barthélémy J.-F., Dormieux L.: Mineral-collagen interactions in elasticity of bone ultrastructure–a continuum micromechanics approach. Eur. J. Mech. A Solids 23, 783–810 (2004) · Zbl 1058.74584
[28] Hellmich C., Ulm F.-J.: Drained and undrained poroelastic properties of healthy and pathological bone: A poro-micromechanical investigation. Transp. Porous Media 58(3), 243–268 (2005)
[29] Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963) · Zbl 0114.15804
[30] Hofstetter K., Hellmich C., Eberhardsteiner J.: Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur. J. Mech. A Solids 24, 1030–1053 (2005) · Zbl 1098.74654
[31] Hofstetter K., Hellmich C., Eberhardsteiner J.: The influence of the microfibril angle on wood stiffness: a continuum micromechanics approach. Comput. Assist. Mechan. Eng. Sci. 13, 523–536 (2006) · Zbl 1116.74054
[32] Hofstetter K., Hellmich C., Eberhardsteiner J.: Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61, 343–351 (2007)
[33] Hofstetter K., Hellmich C., Eberhardsteiner J., Mang H.A.: Micromechanical estimates for elastic limit states in wood materials, revealing nanostructural failure mechanisms. Mechan. Adv. Mater. Struct. 15(6–7), 474–484 (2008)
[34] Holmberg S., Persson K., Peterson H.: Nonlinear mechanical behavior and analysis of wood and fibre materials. Comput. & Struct. 72, 459–480 (1999) · Zbl 1050.74561
[35] Kahle E., Woodhouse J.: The influence of cell geometry on the elasticity of softwood. J. Mater. Sci. 29, 1250–1259 (1994)
[36] Kaminski M.M.: Computational Mechanics of Composite Materials: Sensitivity, Randomness, and Multiscale Behaviour. Springer, Berlin (2005)
[37] Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003) · Zbl 1038.74605
[38] Kollmann F.: Technologie des Holzes und der Holzwerkstoffe [Technology of Wood and Wood Products], 2nd Edition. Vol. 1. Springer Verlag, Berlin Heidelberg New York (1982) in German
[39] Kollmann F., Côté W.: Principles of Wood Science and Technology, Vol. 1. Springer, Berlin (1968)
[40] Laws N.: The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J. Elast. 7(1), 91–97 (1977) · Zbl 0384.73011
[41] Mark R.: Cell Wall Mechanics of Tracheids. 2nd edn. Yale University Press, New Haven (1967)
[42] Michel J.C., Moulinec H., Suquet P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Meth. Appl. Mechan. Eng. 172, 109–143 (1999) · Zbl 0964.74054
[43] Mori T., Tanaka K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)
[44] O’Sullivan A.: Cellulose: the structure slowly unravels. Cellulose 4, 173–207 (1997)
[45] Ostoja-Starzewski M.: Material spatial randomness: from satistical to representative volume element. Probab. Eng. Mechan. 21, 112–132 (2006)
[46] Papka S.D., Kyriakides S.: In-plane biaxial crushing of honeycombs–Part II: analysis. Int. J. Solids Struct. 36, 4397–4423 (1999) · Zbl 0937.74056
[47] Pedersen O.B.: Thermoelasticity and plasticity of composites-I. Mean field theory. Acta Metall. 31, 1795–1808 (1983)
[48] Salmen L., Burgert I.: Cell wall features with regard to mechanical performance. A review, COST Action E35 2004–2008: wood machining micromechanics and fracture. Holzforschung 63, 121–129 (2009)
[49] Scheiner St., Hellmich C.: Continuum microviscoelasticity model for aging basic creep of early-age concrete. J. Eng. Mech. (ASCE) 135(4), 307–323 (2009)
[50] Stamm A.J.: Wood and Cellulose Science. Roland Press, New York (1964)
[51] Suquet P.: Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds) Homogenization Techniques for Composite Media. Lecture Notes in Physics. No. 272, pp. 193–278. Springer, Wien (1987) · Zbl 0645.73012
[52] Suquet, P. (eds): Continuum Micromechanics. Springer, Wien (1997) · Zbl 0864.00042
[53] Tang R.: The microfibrillar orientation in cell-wall layers of virginia pine tracheids. Wood Sci. Technol. 5, 181–186 (1973)
[54] Tashiro K., Kobayashi M.: Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8), 1516–1526 (1991)
[55] Thompson M., Willis J.: A reformation of the equations of anisotropic poroelasticity. J. Appl. Mechan. 58, 612–616 (1991) · Zbl 0754.73017
[56] Young R., Lovell P.: Introduction to Polymers. 2nd edn. Chapman & Hall, London (1991)
[57] Zaoui A.: Continuum micromechanics: survey. J. Eng. Mechan (ASCE). 128(8), 808–816 (2002)
[58] Zhang K., Duan H., Karihaloo B.L., Wang J.: Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc. Nat. Acad. Sci. 107(21), 9502–9506 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.