×

zbMATH — the first resource for mathematics

Constructing a novel no-equilibrium chaotic system. (English) Zbl 1296.34114

MSC:
34C28 Complex behavior and chaotic systems of ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
94C05 Analytic circuit theory
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[2] DOI: 10.1016/j.chaos.2013.08.018 · Zbl 1355.37056 · doi:10.1016/j.chaos.2013.08.018
[3] DOI: 10.1016/j.physleta.2013.01.009 · doi:10.1016/j.physleta.2013.01.009
[4] Leonov G., Trans. Syst. Contr. 6 pp 54–
[5] DOI: 10.1016/j.physleta.2011.04.037 · Zbl 1242.34102 · doi:10.1016/j.physleta.2011.04.037
[6] DOI: 10.1016/j.physd.2012.05.016 · Zbl 1277.34052 · doi:10.1016/j.physd.2012.05.016
[7] DOI: 10.1142/S0218127413300024 · Zbl 1270.34003 · doi:10.1142/S0218127413300024
[8] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[9] DOI: 10.1142/S0218127413501885 · Zbl 1284.34064 · doi:10.1142/S0218127413501885
[10] DOI: 10.1016/0375-9601(76)90101-8 · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[11] Shilnikov L. P., Sov. Math. Dockl. 6 pp 163–
[12] DOI: 10.1142/9789812798596 · doi:10.1142/9789812798596
[13] DOI: 10.1016/j.cnsns.2011.07.017 · Zbl 06048895 · doi:10.1016/j.cnsns.2011.07.017
[14] DOI: 10.1007/s11071-012-0669-7 · doi:10.1007/s11071-012-0669-7
[15] DOI: 10.1007/s11071-011-0284-z · doi:10.1007/s11071-011-0284-z
[16] DOI: 10.1016/j.physleta.2011.10.040 · Zbl 1255.37013 · doi:10.1016/j.physleta.2011.10.040
[17] Wei Z., Optoelectron. Adv. Mater.-Rapid Comm. 6 pp 742–
[18] Wei Z., Optoelectron. Adv. Mater.-Rapid Comm. 7 pp 984–
[19] DOI: 10.1016/0167-2789(85)90011-9 · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.