×

Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the \(\mathrm{C}^0\)-HSDT. (English) Zbl 1296.74124

Summary: A cell-based smoothed three-node Mindlin plate element (CS-MIN3) based on the first-order shear deformation theory (FSDT) was recently proposed for static and dynamics analyses of Mindlin plates. In this paper, the CS-MIN3 is extended to geometrically nonlinear analysis of functionally graded plates (FGPs) subjected to thermo-mechanical loadings. In the FGPs, the material properties are assumed to vary through the thickness by a simple power rule of the volume fractions of the constituents. The nonlinear formulation is based on the \(\mathrm{C}^0\)-type high-order shear deformation plate theory (\(\mathrm{C}^0\)-HSDT) and the von Kármán strains, which deal with small strains and moderate rotations. In the analysis process, both thermal and mechanical loadings are considered and a two-step procedure is performed including a step of analyzing the temperature field along the thickness of the plate and a step of analyzing the geometrically nonlinear behavior of the FGPs subjected to both thermal and mechanical loadings. The accuracy and reliability of the proposed method is verified by comparing its numerical solutions with those of available other numerical results.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Koizumi, M., FGM activities in Japan, Composites, 28, 1-4, (1997)
[2] Fukui, Y.; Yamanaka, N., Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure, Int. J. Jpn Soc. Mech. Eng. Ser. A, 35, 379-385, (1992)
[3] Obata, Y.; Noda, N., Transient thermal stresses in a plate of functionally gradient material ceramic, Trans. Funct. Graded Mater., 34, 403-410, (1994)
[4] Obata, Y.; Noda, N., Optimum material design for functionally gradient material plate, Arch. Appl. Mech., 66, 581-589, (1996) · Zbl 0877.73045
[5] Senthil, S. V.; Batra, R. C., Generalized plane strain thermo-piezoelectric analysis of multilayered plates, J. Therm. Stresses, 26, 353-377, (2003)
[6] Senthil, S. V.; Batra, R. C., Three-dimensional exact solution for the vibration of functionally graded rectangular plates, J. Sound Vib., 272, 703-730, (2004)
[7] Senthil, S. V.; Batra, R. C., Exact solution for thermo-elastic deformations of functionally graded thick rectangular plates, AIAA J., 40, 7, 1421-1433, (2002)
[8] Vel, S. S.; Batra, R. C., Three-dimensional analysis of transient thermal stresses in functionally graded plates, Int. J. Solids Struct., 40, 7181-7196, (2003) · Zbl 1076.74037
[9] Hosseini-Hashemi, Sh.; Fadaee, M.; Atashipour, S. R., A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates, Int. J. Mech. Sci., 53, 11-22, (2011)
[10] Lee, Y. Y.; Zhao, X.; Liew, K. M., Thermoelastic analysis of functionally graded plates using element-free KP-Ritz method, Smart Mater. Struct., 18, 035007, (2009)
[11] Liew, K. M.; Yang, J.; Kitipornchai, S., Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading, Int. J. Solids Struct., 40, 3869-3892, (2003) · Zbl 1038.74546
[12] Liew, K. M.; Yang, J.; Kitipornchai, S., Thermal post-buckling of laminated plates comprising FGM with temperature-dependent properties, Trans. ASME J. Appl. Mech., 71, 839-850, (2004) · Zbl 1111.74519
[13] Liew, K. M.; Kitipornchai, S.; Zhang, X. Z.; Lim, C. W., Analysis of the thermal stress behavior of functionally graded hollow circular cylinders, Int. J. Solids Struct., 40, 2355-2380, (2003) · Zbl 1087.74529
[14] Liew, K. M.; He, X. Q.; Ng, T. Y.; Kitipornchai, S., Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators, Comput. Mech., 31, 350-358, (2003) · Zbl 1038.74594
[15] Reddy, J. N., Analysis of functionally graded plates, Int. J. Numer. Methods Eng., 47, 663-684, (2000) · Zbl 0970.74041
[16] Reddy, J. N.; Chin, C. D., Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stresses, 21, 593-626, (1998)
[17] Javaheri, R.; Eslami, M. R., Thermal buckling of functionally graded plates based on higher order theory, J. Therm. Stresses, 25, 603-625, (2002)
[18] Croce, L. D.; Venini, P., Finite elements for functionally graded Reissner-Mindlin plates, Comput. Methods Appl. Mech. Eng., 193, 705-725, (2007) · Zbl 1106.74408
[19] Zhen, W.; Wanji, C., A higher-order theory and refined three-node triangular element for functionally graded plates, Eur. J. Mech. A/Solids, 25, 447-463, (2006) · Zbl 1143.74379
[20] Gilhooley, D. F.; Batra, R. C.; Xiao, J. R.; McCarthy, M. A.; Gillesoie, J. W., Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions, Compos. Struct., 80, 539-552, (2007)
[21] Zhao, X.; Liew, Y. Y.; Liew, K. M., Free vibration analysis of functionally graded plates using the element-free KP-Ritz method, J. Sound Vib., 319, 918-939, (2009) · Zbl 1228.74119
[22] Zhao, X.; Lee, Y. Y.; Liew, K. M., Mechanical and thermal buckling an analysis of functionally graded plates, Compos. Struct., 20, 161-171, (2009)
[23] Liew, K. M.; Zhao, X.; Ferreira, A. J.M., A review of meshless methods for laminated and functionally graded plates and shells, Compos. Struct., 93, 2031-2041, (2011)
[24] Praveen, G. N.; Reddy, J. N., Nonlinear transient thermo elastic analysis of functionally graded ceramic-metal plates, Int. J. Solids Struct., 35, 4457-4476, (1998) · Zbl 0930.74037
[25] Shen, H. S., Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments, Int. J. Mech. Sci., 44, 561-584, (2002) · Zbl 1022.74023
[26] Woo, J.; Merguid, S. A., Nonlinear analysis of functionally graded plates and shallow shells, Int. J. Solids Struct., 38, 7409-7421, (2001) · Zbl 1010.74034
[27] Kitipornchai, S.; Yang, J.; Liew, K. M., Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, Int. J. Solids Struct., 40, 2355-2380, (2003) · Zbl 1087.74529
[28] Na, K. S.; Kim, J. H., Nonlinear bending response of functionally graded plates under thermal loads, J. Therm. Stresses, 29, 245-261, (2006)
[29] Zhao, X.; Liew, K. M., Geometrically nonlinear analysis of functionally graded plates using the element-free KP-Ritz method, Comput. Methods Appl. Mech. Eng., 198, 2796-2811, (2009) · Zbl 1228.74119
[30] Kaci, A.; Bakhti, K.; Hebali, H.; Tounsi, A., Mathematical solution for nonlinear cylindrical bending of Sigmoid functionally graded plates, J. Appl. Mech. Tech. Phys., 54, 1, 124-131, (2013) · Zbl 1298.74158
[31] Fahsi, B.; Kaci, A.; Tounsi, A.; Adda Bedia, E. A., A four variable refined plate theory for nonlinear cylindrical bending analysis of functionally graded plates under thermomechanical loadings, J. Mech. Sci. Technol., 26, 12, 4073-4079, (2012)
[32] Bakhti, K.; Kaci, A.; Bousahla, A. A.; Houari, M. S.A.; Tounsi, A.; Adda Bedia, E. A., Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory, Steel Compos. Struct., 14, 4, 335-347, (2013)
[33] Kaci, A.; Tounsi, A.; Bakhti, K.; Adda Bedia, E. A., Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates, Steel Compos. Struct., 12, 6, 491-504, (2012)
[34] Aliaga, J. W.; Reddy, J. N., Nonlinear thermoelastric analysis of functionally graded plates using the third-order shear deformation theory, Int. J. Comput. Eng. Sci., 5, 753-779, (2004)
[35] Reddy, J. N.; Kim, Jinseok, A nonlinear modified couple stress-based third-order theory of functionally graded plates, Compos. Struct., 94, 1128-1143, (2012)
[36] Shankara, C. A.; Iyegar, N. G.R., A C^{0} element for the free vibration analysis of laminated composite plates, J. Sound Vib., 191, 721-738, (1996)
[37] Liu, G. R.; Nguyen Thoi, Trong, Smoothed finite element methods, (2010), CRC Press New York
[38] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Eng., 50, 435-466, (2001) · Zbl 1011.74081
[39] Liu, G. R.; Dai, K. Y.; Nguyen-Thoi, T., A smoothed finite element for mechanics problems, Comput. Mech., 39, 859-877, (2007) · Zbl 1169.74047
[40] Nguyen, T. T.; Liu, G. R.; Dai, K. Y.; Lam, K. Y., Selective smoothed finite element method, Tsinghua Sci. Technol., 12, 5, 497-508, (2007)
[41] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Dai, K. Y.; Lam, K. Y., On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (letter to editor), Int. J. Numer. Methods Eng., 77, 1863-1869, (2009) · Zbl 1181.74137
[42] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87, 14-26, (2009)
[43] Nguyen-Thoi, T.; Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Tran, C., Adaptive analysis using the node-based smoothed finite element method (NS-FEM), Commun. Numer. Methods Eng., 27, 198-218, (2011) · Zbl 1370.74144
[44] Nguyen-Thoi, T.; Liu, G. R.; Nguyen-Xuan, H., Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems, Int. J. Comput. Methods, 6, 4, 633-666, (2009) · Zbl 1267.74115
[45] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanics, J. Sound Vib., 320, 1100-1130, (2009)
[46] Nguyen-Thoi, T.; Liu, G. R.; Nguyen-Xuan, H., An n-sided polygonal edge-based smoothed finite element method (nes-FEM) for solid mechanics, Int. J. Numer. Methods Biomed. Eng., 27, 9, 1446-1472, (2011) · Zbl 1248.74043
[47] Nguyen-Thoi, T.; Liu, G. R.; Lam, K. Y.; Zhang, G. Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Int. J. Numer. Methods Eng., 78, 324-353, (2009) · Zbl 1183.74299
[48] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Comput. Methods Appl. Mech. Eng., 197, 3883-3897, (2008) · Zbl 1194.74433
[49] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A novel FEM by scaling the gradient of strains with factor α (αFEM), Comput. Mech., 43, 369-391, (2009) · Zbl 1162.74469
[50] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Xu, X., A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes, J. Comput. Phys., 228, 4055-4087, (2009) · Zbl 1273.74542
[51] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., A variationally consistent αFEM (VCαFEM) for solid mechanics problems, Int. J. Numer. Methods Eng., 85, 461-497, (2011) · Zbl 1217.74126
[52] Liu, G. R.; Nguyen-Thoi, T.; Dai, K. Y.; Lam, K. Y., Theoretical aspects of the smoothed finite element method, Int. J. Numer. Methods Eng., 71, 902-930, (2007) · Zbl 1194.74432
[53] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., A theoretical study on NS/ES-FEM: properties, accuracy and convergence rates, Int. J. Numer. Methods Eng., 84, 1222-1256, (2010) · Zbl 1202.74180
[54] Nguyen-Xuan, H.; Nguyen-Thoi, T., A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates, Int. J. Numer. Methods Biomed. Eng., 25, 882-906, (2009) · Zbl 1172.74047
[55] Cui, X. Y.; Liu, G. R.; Li, G. Y.; Zhao, X.; Nguyen-Thoi, T.; Sun, G. Y., A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells, CMES-Comput. Model. Eng. Sci., 28, 109-125, (2008) · Zbl 1232.74099
[56] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thanh, N.; Nguyen-Thoi, T.; Bordas, S., A node-based smoothed finite element method (NS-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Mech., 46, 5, 679-701, (2010) · Zbl 1260.74029
[57] Nguyen-Xuan, H.; Tran-Vinh, L.; Thai-Hoang, C.; Nguyen-Thoi, T., Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing, Thin-Walled Struct., 54, 1-18, (2012)
[58] Thai-Hoang, C.; Tran-Vinh, L.; Tran-Trung, D.; Nguyen-Thoi, T.; Nguyen-Xuan, H., Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method, Appl. Math. Model., 36, 5657-5677, (2012) · Zbl 1254.74079
[59] Nguyen-Xuan, H.; Tran-Vinh, L.; Nguyen-Thoi, T.; Vu-Do, H. C., Analysis of functionally graded plates using an edge-based smoothed finite element method, Compos. Struct., 93, 11, 3019-3039, (2011)
[60] T. Nguyen-Thoi, T. Bui-Xuan, P. Phung-Van, S. Nguyen-Hoang, H. Nguyen-Xuan, An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates, KSCE J. Civil Eng. (2013) (in press). · Zbl 1294.74064
[61] Nguyen-Thoi, T.; Phung-Van, P.; Nguyen-Xuan, H.; Thai-Hoang, C., A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates, Int. J. Numer. Methods Eng., 91, 705-741, (2012) · Zbl 1253.74111
[62] Phan-Dao, H. H.; Nguyen-Xuan, H.; Thai-Hoang, C.; Nguyen-Thoi, T.; Rabczuk, T., An edge-based smoothed finite element method for analysis of laminated composite plates, Int. J. Comput. Methods, 10, 1, 1340005, (2013) · Zbl 1359.74434
[63] Nguyen-Thoi, T.; Phung-Van, P.; Thai-Hoang, C.; Nguyen-Xuan, H., A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures, Int. J. Mech. Sci., 74, 32-45, (2013)
[64] Nguyen-Thoi, T.; Bui-Xuan, T.; Phung-Van, P.; Nguyen-Xuan, H.; Ngo-Thanh, P., Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements, Comput. Struct., 125, 100-113, (2013)
[65] Phung-Van, P.; Nguyen-Thoi, T.; Tran, V. Loc.; Nguyen-Xuan, H., A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C^{0}-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates, Comput. Mater. Sci., (2013)
[66] Nguyen-Xuan, H.; Liu, G. R.; Thai-Hoang, C.; Nguyen-Thoi, T., An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Comput. Methods Appl. Mech. Eng., 199, 471-489, (2009) · Zbl 1227.74083
[67] Phung-Van, P.; Nguyen-Thoi, T.; Le-Dinh, T.; Nguyen-Xuan, H., Static, free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3), Smart Mater. Struct., 22, 9, 095026, (2013)
[68] Nguyen-Xuan, H.; Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Tran, C., An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., 18, 1-12, (2009)
[69] Liu, G. R.; Chen, L.; Nguyen-Thoi, T.; Zeng, K.; Zhang, G. Y., A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of cracks, Int. J. Numer. Methods Eng., 83, 1466-1497, (2010) · Zbl 1202.74179
[70] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solids using triangular mesh, Comput. Mech., 45, 23-44, (2009) · Zbl 1398.74382
[71] Nguyen-Thoi, T.; Vu-Do, H. C.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Eng., 199, 3005-3027, (2010) · Zbl 1231.74432
[72] Nguyen-Thoi, T.; Liu, G. R.; Vu-Do, H. C.; Nguyen-Xuan, H., A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Comput. Methods Appl. Mech. Eng., 198, 3479-3498, (2009) · Zbl 1230.74193
[73] Tran, T. N.; Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T., An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int. J. Numer. Methods Eng., 82, 917-938, (2010) · Zbl 1188.74073
[74] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thoi, T.; Tran, T. N.; Nguyen-Thanh, N., Computation of limit and shakedown loads using a node-based smoothed finite element method, Int. J. Numer. Methods Eng., 90, 287-310, (2012) · Zbl 1242.74142
[75] Le-Van, C.; Nguyen-Xuan, H.; Askes, H.; Rabczuk, T.; Nguyen-Thoi, T., Computation of limit load using edge-based smoothed finite element method and second-order cone programming, Int. J. Comput. Methods, 10, 1, 1340005, (2013) · Zbl 1359.74420
[76] Nguyen-Thoi, T.; Phung-Van, P.; Rabczuk, T.; Nguyen-Xuan, H.; Le-Van, C., An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems, Int. J. Comput. Methods, 10, 1, 1340003, (2013) · Zbl 1359.74432
[77] Chen, L.; Zhang, G. Y.; Zhang, J.; Nguyen-Thoi, T.; Tang, Q., An adaptive edge-based smoothed point interpolation method for mechanics problems, Int. J. Comput. Math., 88, 2379-2402, (2011) · Zbl 1227.74108
[78] Wu, S. C.; Liu, G. R.; Cui, X. Y.; Nguyen-Thoi, T.; Zhang, G. Y., An edge-based smoothed point interpolation method (ES-PIM) for heat transfer analysis of rapid manufacturing system, Int. J. Heat Mass Transfer, 53, 1938-1950, (2010) · Zbl 1190.80038
[79] Nguyen-Thoi, T.; Phung-Van, P.; Rabczuk, T.; Nguyen-Xuan, H.; Le-Van, C., Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM), Int. J. Comput. Methods, 10, 1, 1340008, (2013) · Zbl 1359.74433
[80] Nguyen-Thoi, T.; Phung-Van, P.; Luong-Van, H.; Nguyen-Van, H.; Nguyen-Xuan, H., A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates, Comput. Mech., 51, 65-81, (2013) · Zbl 1294.74064
[81] Tessler, A.; Hughes, T. J.R., A three-node Mindlin plate element with improved transverse shear, Comput. Methods Appl. Mech. Eng., 50, 71-101, (1985) · Zbl 0562.73069
[82] Fung, Y. C., Foundation of solid mechanics, (1965), Prentice Hall
[83] Reddy, J. N., An introduction to nonlinear finite element analysis, (2004), Oxford University Press
[84] Reddy, J. N., A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 745-752, (1984) · Zbl 0549.73062
[85] Liu, G. R., Meshfree methods: moving beyond the finite element method, (2009), CRC Press Florida
[86] Crisfield, M. A., Non-linear finite element analysis of solids and structures, (2000), John Wiley and Sons Chichester, England
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.