×

Testing unidimensionality in polytomous Rasch models. (English) Zbl 1297.62228

Summary: A fundamental assumption of most IRT models is that items measure the same unidimensional latent construct. For the polytomous Rasch model two ways of testing this assumption against specific multidimensional alternatives are discussed. One, a marginal approach assuming a multidimensional parametric latent variable distribution, and, two, a conditional approach with no distributional assumptions about the latent variable. The second approach generalizes the Martin-Löf test for the dichotomous Rasch model in two ways: to polytomous items and to a test against an alternative that may have more than two dimensions. A study on occupational health is used to motivate and illustrate the methods.

MSC:

62P15 Applications of statistics to psychology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Adams, R.J., Wilson, M., & Wang, W.C. (1997). The multidimensional random coefficients multinomial logit model.Applied Psychological Measurement, 21, 1–23
[2] Agresti, A. (1993). Computing conditional maximum likelihood estimates for generalized Rasch models using simple loglinear models with diagonals parameters.Scandinavian Journal of Statistics, 20, 63–71 · Zbl 0770.62095
[3] Andersen, E.B. (1973). A goodness of fit test for the Rasch model.Psychometrika, 38, 123–140 · Zbl 0276.62048
[4] Andersen, E.B. (1980).Discrete statistical models with social science applications. Amsterdam: North-Holland · Zbl 0423.62001
[5] Andersen, E.B. (1995). Polytomous Rasch Models and their Estimation. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models–Foundations, recent developments, and applications (pp. 271–291). Berlin: Springer-Verlag. · Zbl 0844.62091
[6] Andrich, D. (1978). A rating formulation for ordered response categories.Psychometrika, 43, 561–573 · Zbl 0438.62086
[7] Carstensen, C.H., & Rost, J. (2001). MULTIRA (Version 1.63) [Computer software and manual]. Retrieved from http://www.multira.de (In German–version 1.62 of the software is available in English)
[8] Cressie, N. & Holland, P.W. (1983). Characterizing the manifest probabilities of trait models.Psychometrika, 48, 129–141 · Zbl 0533.62092
[9] de Leeuw, J., & Verhelst, N.D. (1986). Maximum likelihood estimation in generalized Rasch models.Journal of Educational Statistics, 11, 183–196
[10] Efron, B., & Tibshirani, R. (1993).An introduction to the bootstrap. London: Chapman & Hall. · Zbl 0835.62038
[11] Glas, C.A.W., & Verhelst, N.D. (1995). Tests of fit for polytomous Rasch models. In G.H. Fischer & I.W. Molenaar (Eds.), Rasch models–Foundations, recent developments, and applications (pp. 325–352). Berlin: Springer-Verlag. · Zbl 0825.62940
[12] Kelderman, H., & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for polytomously scored items.Psychometrika, 59, 149–176 · Zbl 0825.62936
[13] Martin-Löf, P. (1970).Statistiska modeller: Anteckninger från seminarier läsåret 1969–70 utarbetade av Rolf Sundberg Statistical models. Notes from the academic year 1969–70. Stockholm: Institutet för försäkringsmatematik och matematisk statistik vid Stockholms universitet.
[14] Masters, G.N. (1982). A Rasch model for partial credit scoring.Psychometrika, 47, 149–174 · Zbl 0493.62094
[15] Neyman, J., & Scott, E.L. (1948). Consistent estimates based on partially consistent observations.Econometrika, 16, 1–32 · Zbl 0034.07602
[16] Rost, J., & Carstensen, C.H. (2002). Multidimensional Rasch measurement via item component models and faceted designs.Applied Psychological Measurement, 26, 42–56.
[17] Self, S.G., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions.Journal of the American Statistical Association, 82, 605–610 · Zbl 0639.62020
[18] Tjur, T. (1982). A Connection between Rasch’s item analysis model and a multiplicative Poisson model.Scandinavian Journal of Statistics, 9, 23–30 · Zbl 0484.62115
[19] van den Wollenberg, A.L. (1982). Two new test statistics for the Rasch model.Psychometrika, 47, 123–139 · Zbl 0489.62098
[20] Verhelst, N.D., Glas, C.A.W., & Verstralen, H.H.F.M (1995).OPLM: Computer program and manual. Arnhem: CITO
[21] Wu, M., Adams, R.J., & Wilson, M.R. (1998).ACER Conquest: Generalised item response modelling software. Hawthorn: Australian Council for Educational Research
[22] Zwinderman, A.H., & van den Wollenberg, A.L. (1990). Robustness of marginal maximum likelihood estimation in the Rasch model.Applied Psychological Measurement, 14, 73–81
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.