×

A globally and locally superlinearly convergent inexact Newton-GMRES method for large-scale variational inequality problem. (English) Zbl 1297.90157

Summary: In this paper, we propose an inexact Newton-generalized minimal residual method for solving the variational inequality problem. Based on a new smoothing function, the variational inequality problem is reformulated as a system of parameterized smooth equations. In each iteration, the corresponding linear system is solved only approximately. Under mild assumptions, it is proved that the proposed algorithm has global convergence and local superlinear convergence properties. Preliminary numerical results indicate that the method is effective for a large-scale variational inequality problem.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF02591868 · Zbl 0506.90081 · doi:10.1007/BF02591868
[2] DOI: 10.1137/0912003 · Zbl 0719.65022 · doi:10.1137/0912003
[3] DOI: 10.1090/S0025-5718-98-00932-6 · Zbl 0894.90143 · doi:10.1090/S0025-5718-98-00932-6
[4] Clarke F. H., Optimization and Nonsmooth Analysis (1983) · Zbl 0582.49001
[5] DOI: 10.1007/BF02614395 · Zbl 0871.90096 · doi:10.1007/BF02614395
[6] DOI: 10.1007/b97544 · Zbl 1062.90002 · doi:10.1007/b97544
[7] DOI: 10.1080/02331939208843795 · Zbl 0814.65063 · doi:10.1080/02331939208843795
[8] DOI: 10.1016/j.cam.2007.02.037 · Zbl 1162.65035 · doi:10.1016/j.cam.2007.02.037
[9] DOI: 10.1007/BF01582255 · Zbl 0734.90098 · doi:10.1007/BF01582255
[10] DOI: 10.1016/S0377-2217(03)00385-0 · Zbl 1067.90152 · doi:10.1016/S0377-2217(03)00385-0
[11] DOI: 10.1287/moor.1060.0233 · Zbl 1276.91070 · doi:10.1287/moor.1060.0233
[12] Kanzow C., Math. Program. 81 pp 103– (1998)
[13] DOI: 10.1137/0315061 · Zbl 0376.90081 · doi:10.1137/0315061
[14] DOI: 10.1007/BF02591989 · Zbl 0613.90097 · doi:10.1007/BF02591989
[15] DOI: 10.1007/BF01581275 · Zbl 0780.90090 · doi:10.1007/BF01581275
[16] Qi L. Q., Math. Program. 87 pp 1– (2000) · Zbl 0989.90124 · doi:10.1007/s101079900127
[17] DOI: 10.1137/S1052623497329567 · Zbl 1010.90083 · doi:10.1137/S1052623497329567
[18] DOI: 10.1137/0907058 · Zbl 0599.65018 · doi:10.1137/0907058
[19] DOI: 10.1016/j.amc.2009.01.054 · Zbl 1162.65364 · doi:10.1016/j.amc.2009.01.054
[20] DOI: 10.1016/j.cam.2010.01.011 · Zbl 1191.65081 · doi:10.1016/j.cam.2010.01.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.