zbMATH — the first resource for mathematics

Translated chemical reaction networks. (English) Zbl 1297.92096
Summary: Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network’s capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

92E20 Classical flows, reactions, etc. in chemistry
92C40 Biochemistry, molecular biology
PDF BibTeX Cite
Full Text: DOI arXiv
[1] Angeli, D.; Sontag, E., Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles, Nonlinear Anal., Real World Appl., 9, 128-140, (2008) · Zbl 1401.92086
[2] Angeli, D.; Leenheer, P.; Sontag, E., A Petri net approach to the study of persistence in chemical reaction networks, Math. Biosci., 210, 598-618, (2007) · Zbl 1133.92322
[3] Clarke, B. L., Stability of complex reaction networks, Adv. Chem. Phys., 43, 1-215, (1980)
[4] Conradi, C.; Flockerzi, D.; Raisch, J., Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space, Math. Biosci., 211, 105-131, (2008) · Zbl 1130.92024
[5] Cox, D., Little, J., & O’Shea, D. (2007). Undergraduate texts in mathematics. Ideals, varieties and algorithms (3rd ed.). Berlin: Springer.
[6] Craciun, G.; Feinberg, M., Multiple equilibria in complex chemical reaction networks: I. the injectivity property, SIAM J. Appl. Math., 65, 1526-1546, (2005) · Zbl 1094.80005
[7] Craciun, G.; Feinberg, M., Multiple equilibria in complex chemical reaction networks: II. the species-reaction graph, SIAM J. Appl. Math., 66, 1321-1338, (2006) · Zbl 1136.80306
[8] Craciun, G.; Dickenstein, A.; Shiu, A.; Sturmfels, B., Toric dynamical systems, J. Symb. Comput., 44, 1551-1565, (2009) · Zbl 1188.37082
[9] Deng, J., Feinberg, M., Jones, C., & Nachman, A. (2011). On the steady states of weakly reversible chemical reaction networks. Preprint available on the arXiv:1111.2386. · Zbl 1261.92063
[10] Dickenstein, A.; Pérez Millán, M., How far is complex balancing from detailed balancing?, Bull. Math. Biol., 73, 811-828, (2011) · Zbl 1214.92036
[11] Érdi, P., & Tóth, J. (1989). Mathematical models of chemical reactions. Princeton: Princeton University Press. · Zbl 0696.92027
[12] Feinberg, M., Complex balancing in general kinetic systems, Arch. Ration. Mech. Anal., 49, 187-194, (1972)
[13] Feinberg, M. (1979). Lectures on chemical reaction networks. Unpublished written versions of lectures given at the Mathematics Research Center, University of Wisconsin. Available at http://www.chbmeng.ohio-state.edu/ feinberg/LecturesOnReactionNetworks/.
[14] Feinberg, M., Chemical reaction network structure and the stability of complex isothermal reactors: I. the deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42, 2229-2268, (1987)
[15] Feinberg, M., Chemical reaction network structure and the stability of complex isothermal reactors: II. multiple steady states for networks of deficiency one, Chem. Eng. Sci., 43, 1-25, (1988)
[16] Feinberg, M., Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity, Chem. Eng. Sci., 44, 1819-1827, (1989)
[17] Feinberg, M., The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Ration. Mech. Anal., 132, 311-370, (1995) · Zbl 0853.92024
[18] Feinberg, M., Multiple steady states for chemical reaction networks of deficiency one, Arch. Ration. Mech. Anal., 132, 371-406, (1995) · Zbl 0853.92025
[19] Flockerzi, D., & Conradi, C. (2008). Subnetwork analysis for multistationarity in mass-action kinetics. J. Phys. Conf. Ser., 138(1). · Zbl 1278.37058
[20] Gatermann, K.; Green, E. L. (ed.); Hosten, S. (ed.); Laubenbacher, R. C. (ed.); Powers, V. A. (ed.), Counting stable solutions of sparse polynomial systems in chemistry, No. 286, 53-69, (2001) · Zbl 1009.68198
[21] Gatermann, K.; Huber, B., A family of sparse polynomial systems arising in chemical reaction systems, J. Symb. Comput., 33, 275-305, (2002) · Zbl 0994.92040
[22] Gatermann, K.; Wolfrum, M., Bernstein’s second theorem and viro’s method for sparse polynomial systems in chemistry, Adv. Appl. Math., 34, 252-294, (2005) · Zbl 1075.65074
[23] Gunawardena, J., Multisite protein phosphorylation makes a good threshold but can be a poor switch, Proc. Natl. Acad. Sci. USA, 102, 14617-14622, (2005)
[24] Gunawardena, J., Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants, Biophys. J., 93, 3828-3834, (2007)
[25] Holstein, K.; Flockerzi, D.; Conradi, C., Multistationarity in sequentially distributed multisite phosphorylation networks, Bull. Math. Biol., 75, 2028-2058, (2013) · Zbl 1283.92030
[26] Horn, F., Necessary and sufficient conditions for complex balancing in chemical kinetics, Arch. Ration. Mech. Anal., 49, 172-186, (1972)
[27] Horn, F.; Jackson, R., General mass action kinetics, Arch. Ration. Mech. Anal., 47, 187-194, (1972)
[28] Johnston, M. D. (2011). Topics in chemical reaction network theory. PhD thesis, University of Waterloo.
[29] Manrai, A.; Gunawardena, J., The geometry of multisite phosphorylation, Biophys. J., 95, 5533-5543, (2009)
[30] Markevich, N. I.; Hoek, J. B.; Kholodenko, B. N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164, 353-359, (2004)
[31] Müller, S.; Regensburger, G., Generalized mass action systems: complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces, SIAM J. Appl. Math., 72, 1926-1947, (2012) · Zbl 1261.92063
[32] Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., & Dickenstein, A. (2013). Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Preprint available on the arXiv:1311.5492. · Zbl 1382.92272
[33] Pérez Millán, M.; Dickenstein, A.; Shiu, A.; Conradi, C., Chemical reaction systems with toric steady states, Bull. Math. Biol., 74, 1027-1065, (2012) · Zbl 1251.92016
[34] Savageau, M. A., Biochemical systems analysis II. the steady-state solutions for an \(n\)-pool system using a power-law approximation, J. Theor. Biol., 25, 370-379, (1969)
[35] Shinar, G.; Feinberg, M., Structural sources of robustness in biochemical reaction networks, Science, 327, 1389-1391, (2010)
[36] Shinar, G.; Feinberg, M., Concordant chemical reaction networks, Math. Biosci., 240, 92-113, (2012) · Zbl 1316.92100
[37] Shiu, A. J. (2010). Algebraic methods for biochemical reaction network theory. PhD thesis, University of California, Berkeley.
[38] Stanley, R. (1999). Enumerative combinatorics (Vol. 2). Cambridge: Cambridge University Press. · Zbl 0928.05001
[39] Vol’pert, A. I., & Hudjaev, S. I. (1985). Analysis in classes of discontinuous functions and equations of mathematical physics. Dordrecht: Martinus Nijhoff.
[40] Wang, L.; Sontag, E., On the number of steady states in a multiple futile cycle, J. Math. Biol., 57, 25-52, (2008) · Zbl 1141.92022
[41] Wilhelm, T.; Heinrich, R., Smallest chemical reaction system with Hopf bifurcations, J. Math. Chem., 17, 1-14, (1995) · Zbl 0865.92024
[42] Wilhelm, T.; Heinrich, R., Mathematical analysis of the smallest chemical reaction system with Hopf bifurcation, J. Math. Chem., 19, 111-130, (1996) · Zbl 0882.34044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.