×

A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. (English) Zbl 1298.65098

Summary: Evolutionary algorithms (EAs) have yielded promising results for solving nonlinear, non-differentiable and multi-modal optimization problems. Due to its population-based nature, EAs can avoid being trapped in a local optimum, and consequently have the ability to find global optimal solutions. As a novel evolutionary technique, differential evolution (DE) has received increasing attention and wide applications in a variety of fields. DE algorithm uses an efficient way of self-adapting mutation using small populations for function optimization over continuous spaces. The potentialities of DE are its simple structure, easy use, convergence property, quality of solution, and robustness. In this paper, an effective self-adaptive DE algorithm based on Gaussian probability distribution, gamma distribution and chaotic sequence (DEGC) for solving continuous global optimization problems is proposed. The proposed DEGC algorithm is tested on several benchmark functions from the usual literature. Numerical results comparisons with a classical DE approach and a self-adaptive DE approach demonstrate the effectiveness and efficiency of the proposed DEGC algorithm.

MSC:

65K05 Numerical mathematical programming methods
90C59 Approximation methods and heuristics in mathematical programming

Software:

CEC 13
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Deep, K.; Singh, K. P.; Kansal, M. L.; Mohan, C., A real coded genetic algorithm for solving integer and mixed integer optimization problems, Appl. Math. Comput., 212, 2, 505-518, (2009) · Zbl 1168.65353
[2] Tsoulos, I. G., Modifications of real code genetic algorithm for global optimization, Appl. Math. Comput., 203, 2, 598-607, (2008) · Zbl 1157.65391
[3] Sun, D.-Y.; Ni, S.-C.; Huang, T.-C., Apply a novel evolutionary algorithm to the solution of parameter selection problems, Appl. Math. Comput., 216, 11, 3343-3354, (2010) · Zbl 1193.65101
[4] Hong, W.-C.; Dong, Y.; Zheng, F.; Wei, S. Y., Hybrid evolutionary algorithms in a SVR traffic flow forecasting model, Appl. Math. Comput., 217, 15, 6733-6747, (2011) · Zbl 1208.90042
[5] Wang, C.-H.; Hsu, L.-C., Using genetic algorithms grey theory to forecast high technology industrial output, Appl. Math. Comput., 195, 1, 256-263, (2008) · Zbl 1163.91536
[6] Deep, K.; Das, K. N., Quadratic approximation based hybrid genetic algorithm for function optimization, Appl. Math. Comput., 203, 1, 86-98, (2008) · Zbl 1154.65336
[7] Bhunia, A. K.; Sahoo, L.; Roy, D., Reliability stochastic optimization for a series system with interval component reliability via genetic algorithm, Appl. Math. Comput., 216, 3, 929-939, (2010) · Zbl 1189.65125
[8] Gwizdałła, T. M., The role of different genetic operators in the optimization of magnetic models, Appl. Math. Comput., 218, 18, 9220-9233, (2012) · Zbl 1245.82003
[9] R. Storn, K. Price, Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report TR-95-012, 1995, International Computer Science Institute, Berkeley, USA. · Zbl 0888.90135
[10] Storn, R.; Price, K., Differential evolution a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359, (1997) · Zbl 0888.90135
[11] Thangaraj, R.; Pant, M.; Abraham, A., New mutation schemes for differential evolution algorithm and their application to the optimization of directional over-current relay settings, Appl. Math. Comput., 216, 2, 532-544, (2010) · Zbl 1187.65072
[12] Wang, X.-S.; Hao, M.-L.; Cheng, Y.-H., On the use of differential evolution for forward kinematics of parallel manipulators, Appl. Math. Comput., 205, 2, 760-769, (2008) · Zbl 1157.65392
[13] Coelho, L. S.; Mariani, V. C., Improved differential evolution algorithms for handling economic dispatch optimization with generator constraints, Energy Convers. Manage., 48, 5, 1631-1639, (2007)
[14] Salman, A.; Engelbrecht, A. P.; Omran, M. G.H., Empirical analysis of self-adaptive differential evolution, Eur. J. Oper. Res., 183, 2, 785-804, (2007) · Zbl 1179.90314
[15] Noman, N.; Iba, H., Accelerating differential evolution using an adaptive local search, IEEE Trans. Evol. Comput., 12, 1, 107-125, (2008)
[16] J. Vesterström, R. Thomsen, A comparative study of differential evolution, particle swarm optimization and evolutionary algorithms on numerical benchmark problems, in: Proceedings of the 6th Congress on Evolutionary Computation (CEC-2004), vol. 2, Piscataway, NJ, USA, 2004, 1980-1987.
[17] R. Ursem, R. Vadstrup, Parameter identification of induction motors using differential evolution, in: Proceedings of the 5th Congress on Evolutionary Computation (CEC-2003), vol. 1, Piscataway, NJ, USA, 2003, 790-796.
[18] T. Krink, B. Filipic, G. Fogel, R. Thomsen, Noisy optimization problems — a particular challenge for differential evolution, in: Proceedings of the 6th Congress on Evolutionary Computation (CEC-2004), vol. 1, Piscataway, NJ, USA, 2004, 332-339.
[19] Price, K.; Storn, R.; Lampinen, J. A., Differential evolution - A practical approach to global optimization, (2005), Springer-Verlag Heidelberg, Germany · Zbl 1186.90004
[20] Mayer, D. G.; Kinghorn, B. P.; Archer, A. A., Differential evolution - an easy and efficient evolutionary algorithm for model optimisation, Agric. Syst., 83, 3, 315-328, (2005)
[21] M. E. H. Pedersen, Good parameters for differential evolution, Technical Report no. HL 1002-2010, Hvass Laboratories, 2010.
[22] Gämperle, R.; Müller, S. D.; Koumoutsakos, P., A parameter study for differential evolution, (Grmela, A.; Mastorakis, N. E., Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, (2002), WSEAS Press Interlaken, Switzerland), 293-298
[23] D. Zaharie, Critical values for the control parameters of differential evolution algorithms, in: Proceedings of the 8th International Conference on Soft Computing (MENDEL 2002), Brno, Czech Republic, 2002, 62-67.
[24] Teo, S., Exploring dynamic self-adaptive populations in differential evolution, soft computing - A fusion of foundations, Meth. Appl., 10, 8, 673-686, (2006)
[25] S. Das, A. Konar, U. K. Chakraborty, Two improved differential evolution schemes for faster global search, in: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), Washington, DC, USA, 2005, 991-998.
[26] A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, 2005, 1785-1791.
[27] Sun, J.; Zhang, Q.; Tsang, E. P., DE/EDA: a new evolutionary algorithm for global optimization, Inf. Sci., 169, 3-4, 249-262, (2005)
[28] Liu, J.; Lampinen, J., A fuzzy adaptive differential evolution algorithm, soft computing - A fusion of foundations, Meth. Appl., 9, 6, 448-462, (2005) · Zbl 1076.93513
[29] Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V., Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput., 10, 6, 646-657, (2006)
[30] Rahnamayan, S.; Tizhoosh, H. R.; Salama, M. M.A., Opposition-based differential evolution, IEEE Trans. Evol. Comput., 12, 1, 64-79, (2008)
[31] J. Rönkkönen, S. Kukkonen, K. V. Price, Real-parameter optimization with differential evolution, in: Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, 2005, 506-513.
[32] H. A. Abbass, The self-adaptive Pareto differential evolution algorithm, in: Proceedings of the Congress on Evolutionary Computation, Honolulu, HI, USA, 2002, 831-836.
[33] Ali, M. M.; Törn, A., Population set based global optimization algorithms: some modifications and numerical studies, Comput. Oper. Res., 31, 10, 1703-1725, (2004) · Zbl 1073.90576
[34] Kaelo, P.; Ali, M. M., A numerical study of some modified differential evolution algorithm, Eur. J. Oper. Res., 169, 3, 1176-1184, (2006) · Zbl 1079.90106
[35] Li, B.; Jiang, W., Optimizing complex functions by chaos search, Cybern. Syst., 29, 4, 409-419, (1998) · Zbl 1012.90068
[36] Jiang, C.; Ma, Y.; Wang, C., PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP), Energy Convers. Manage., 47, 9-10, 1222-1230, (2006)
[37] Li, L.; Yang, Y.; Peng, H.; Wang, X., Parameters identification of chaotic systems via chaotic ant swarm, Chaos Solitons Fractals, 28, 15, 82-90, (2006)
[38] Wang, L.; Smith, K., On chaotic simulated annealing, IEEE Trans. Neural Networks, 9, 4, 716-718, (1998)
[39] Liao, G. C.; Tsao, T. P., Application embedded chaos search immune genetic algorithm for short-term unit commitment, Electr. Power Syst. Res., 71, 2, 135-144, (2004)
[40] Zilong, G.; Sun’an, W.; Jian, Z., A novel immune evolutionary algorithm incorporating chaos optimization, Pattern Recognit. Lett., 27, 1, 2-8, (2006)
[41] Mingjun, J.; Huanwen, T., Application of chaos in simulated annealing, Chaos Solitons Fractals, 21, 4, 933-941, (2004) · Zbl 1045.37054
[42] Coelho, L. S.; Pessôa, M. W., A tuning strategy for multivariable PI and PID controllers using differential evolution combined with chaotic zaslavskii map, Expert Syst. Appl., 38, 11, 13694-13701, (2011)
[43] dos Santos, G. S.; Luvizotto, L. G.J.; Mariani, V. C.; Coelho, L. S., Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process, Expert Syst. Appl., 39, 5, 4805-4812, (2012)
[44] Coelho, L. S.; Mariani, V. C., Firefly algorithm approach based on chaotic tinkerbell map applied to multivariable PID controller tuning, Comput. Math. Appl., 64, 8, 2371-2382, (2012) · Zbl 1268.93053
[45] Krohling, R. A.; Coelho, L. S., Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems, IEEE Trans. Syst. Man Cybern. - Part B Cybern., 36, 6, 1407-1416, (2006)
[46] R. A. Krohling, Gaussian swarm: a novel particle swarm optimization algorithm, in: Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems (CIS), Singapore, 2004, 372-376.
[47] B. R. Secrest, G. B. Lamont, Visualizing particle swarm optimization Gaussian particle swarm optimization, in: Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 2003, 198-204.
[48] N. Higashi, H. Iba, Particle swarm optimization with Gaussian mutation, in: Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 2003, 72-79.
[49] Coelho, L. S.; Lee, C. S., Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches, Int. J. Electr. Power Energy Syst., 30, 5, 297-307, (2008)
[50] Strogatz, S. H., Nonlinear dynamics and chaos, (2000), Perseus Publishing Massachussetts
[51] Parker, T. S.; Chua, L. O., Practical numerical algorithms for chaotic system, (1989), Springer-Verlag Berlin, Germany · Zbl 0692.58001
[52] Gomes, O.; Combe, C.; Dussauchoy, A., Parameter estimation of the generalized gamma distribution, Math. Comput. Simul., 79, 4, 955-963, (2008) · Zbl 1162.65309
[53] Coelho, L. S.; Mariani, V. C.; Ferreira da Luz, M. V.; Leite, J. V., Novel gamma differential evolution approach for multiobjective transformer design optimization, IEEE Trans. Magn., 49, 5, 2121-2124, (2013)
[54] Shang, Y. W.; Qiu, Y. H., A note on the extended rosenbrock function, Evol. Comput., 14, 119-126, (2006)
[55] J. Liang, B-Y. Qu, P. N. Suganthan, A. G. Hernández-Díaz, Problem definitions and evaluation criteria for the CEC 2013 Special session and competition on real-parameter optimization, Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, January 2013.
[56] Barr, R. S.; Golden, B. L.; Kelly, J. P.; Resende, M. G.C.; Stewart, W. R., Designing and reporting on computational experiments with heuristic methods, J. Heuristics, 1, 9-35, (1995) · Zbl 0853.68154
[57] Derrac, J.; García, S.; Molina, D.; Herrera, F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 1, 3-18, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.