×

zbMATH — the first resource for mathematics

Entropy generation analysis in a variable viscosity MHD channel flow with permeable walls and convective heating. (English) Zbl 1299.76300
Summary: This paper examines the effects of the thermodynamic second law on steady flow of an incompressible variable viscosity electrically conducting fluid in a channel with permeable walls and convective surface boundary conditions. The nonlinear model governing equations are solved numerically using shooting quadrature. Numerical results of the velocity and temperature profiles are utilised to compute the entropy generation number and the Bejan number. The results revealed that entropy generation minimization can be achieved by appropriate combination of the regulated values of thermophysical parameters controlling the flow systems.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] (1990)
[2] Matematisk-Fysiske Meddelelser 15 pp 6– (1937)
[3] (1965)
[4] DOI: 10.1016/j.camwa.2010.11.021 · Zbl 1211.76152 · doi:10.1016/j.camwa.2010.11.021
[5] Arkiv för Fysik 5 (5) pp 69– (1952)
[6] Romanian Journal of Physics 50 (9-10) pp 931– (2005)
[7] Tamkang Journal of Science and Engineering 14 (1) pp 7– (2011)
[8] DOI: 10.1007/BF02921812 · Zbl 0113.42602 · doi:10.1007/BF02921812
[9] DOI: 10.1016/j.jmmm.2011.05.040 · doi:10.1016/j.jmmm.2011.05.040
[10] DOI: 10.1016/S0065-2717(08)70172-2 · doi:10.1016/S0065-2717(08)70172-2
[11] (1975)
[12] International Journal of Heat and Mass Transfer 46 pp 1321– (2003) · Zbl 1025.76545 · doi:10.1016/S0017-9310(02)00420-9
[13] DOI: 10.1016/j.ijthermalsci.2004.05.001 · doi:10.1016/j.ijthermalsci.2004.05.001
[14] Entropy 5 (5) pp 404– (2003) · Zbl 1187.00001 · doi:10.3390/e5050404
[15] DOI: 10.1016/j.icheatmasstransfer.2007.05.019 · doi:10.1016/j.icheatmasstransfer.2007.05.019
[16] Journal of Thermal Science and Technology 7 (4) pp 522– (2012) · doi:10.1299/jtst.7.522
[17] Entropy 15 pp 220– (2013) · Zbl 06346060 · doi:10.3390/e15010220
[18] Computers & Fluids 71 pp 426– (2013) · Zbl 1365.76349 · doi:10.1016/j.compfluid.2012.11.011
[19] (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.