×

Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach. (English) Zbl 1301.35065


MSC:

35P15 Estimates of eigenvalues in context of PDEs
35B25 Singular perturbations in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
45F15 Systems of singular linear integral equations
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agmon, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Communications on Pure and Applied Mathematics 12 pp 623– (1959) · Zbl 0093.10401
[2] Cartan, Cours de Calcul Différentiel (1967)
[3] Chiado Piat, Steklov problems in perforated domains with a coefficient of indefinite sign, Networks and Heterogeneous Media 7 pp 151– (2012) · Zbl 1262.35025
[4] Dalla Riva, Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem. A functional analytic approach, Complex Var, Elliptic Equations 55 pp 771– (2010) · Zbl 1200.35146
[5] Dalla Riva, Real analytic families of harmonic functions in a domain with a small hole, Journal of Differential Equations 252 pp 6337– (2012) · Zbl 1241.31006
[6] Dautray, Mathematical analysis and numerical methods for science and technology. Vol. 1. Physical origins and classical methods. With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon. Translated from the Frenc (1990)
[7] Deimling, Nonlinear Functional Analysis (1985)
[8] Dittmar, Zu einem Stekloffschen Eigenwertproblem in Ringgebieten, Mitteilungen Mathematical Seminar Giessen 228 pp 1– (1996) · Zbl 0866.35082
[9] Douanla, Two-scale convergence of Stekloff eigenvalue problems in perforated domains, Boundary Value Problems pp 15– (2010) · Zbl 1214.47020
[10] Folland, Introduction to partial differential equations, 2. ed. (1995) · Zbl 0841.35001
[11] Gilbarg, Elliptic Partial Differential Equations of Second Order (1983) · Zbl 0361.35003
[12] Gryshchuk, Asymptotic 9 pp 113– (2012)
[13] Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics (2006) · Zbl 1109.35081
[14] Kuznetsov, The Steklov problem in symmetric domains with infinitely extended boundary, Proceedings of the St. Petersburg Mathematical Society. XIV, pp. 45-78, Amer. Math. Soc. Transl. Ser. 2, 228, Amer. Math. Soc (2009) · Zbl 1191.35190
[15] Lanza de Cristoforis, Properties and Pathologies of the composition and inversion operators in Schauder spaces, Rendiconti Accademia Nazionale delle Scienze detta dei XL 15 pp 93– (1991) · Zbl 0829.47059
[16] Lanza de Cristoforis, Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach, Complex Var, Elliptic Equations 52 pp 945– (2007) · Zbl 1143.35057
[17] Lanza de Cristoforis, Asymptotic behaviour of the solutions of a non-linear transmission problem for the Laplace operator in a domain with a small hole. A functional analytic approach, Complex Var, Elliptic Equations 55 pp 269– (2010) · Zbl 1241.35049
[18] Lanza de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole, Revista Matemática Complutense 25 pp 369– (2012) · Zbl 1302.35272
[19] Lanza de Cristoforis, A real analyticity result for a nonlinear integral operator, Journal of Integral Equations and Applications 25 pp 21– (2013) · Zbl 1278.47057
[20] Lanza de Cristoforis, Real analytic dependence of simple and double layer potentials upon perturbation of the support and of the density, Journal of Integral Equations and Applications 16 pp 137– (2004) · Zbl 1094.31001
[21] Mel’nik, Asymptotic expansions of eigenvalues and eigenfunctions for elliptic boundary-value problems with rapidly oscillating coefficients in a perforated cube, Journal of Mathematical Sciences 75 pp 1646– (1995) · Zbl 0844.35072
[22] Miranda, Partial differential equations of elliptic type, Second revised edition (1970) · Zbl 0198.14101
[23] Miranda, Sulle proprietà di regolarità di certe trasformazioni integrali, Atti della Accademia Nazionale dei Lincei Mem Classe di Scienze Fisiche, Matematiche e Naturali, Sez I 7 pp 303– (1965)
[24] Musolino, A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach, Mathematical Methods in the Applied Sciences 35 pp 334– (2012) · Zbl 1232.35179
[25] Nazarov, Asymptotic behavior of the Steklov spectral problem in a domain with a blunted peak, (Russian) Matematicheskie Zametki 86 pp 542– (2009) · Zbl 1185.35156
[26] Nazarov, Asymptotic expansions of the eigenvalues of the Steklov problem in singularly perturbed domains, (Russian) Algebra i Analiz (English transl. in St. Petersburg Mathematical Journal) 2013 (to appear)
[27] Nazarov, Proceedings of the St. Petersburg Mathematical Society. XIV pp 79– (2009)
[28] Nazarov, On the spectrum of the Steklov problem in a domain with a peak, Vestnik St. Petersburg Univ. Math 41 pp 45– (2008) · Zbl 1171.35086
[29] Pastukhova, On the error of averaging for the Steklov problem in a punctured domain, (Russian) Differentsial’nye Uravneniya 31 pp 1042– (1995)
[30] Prodi, Analisi non lineare (1973)
[31] Shamma, Asymptotic behavior of Stekloff eigenvalues and eigenfunctions, SIAM Journal on Applied Mathematics 20 pp 482– (1971) · Zbl 0216.38402
[32] Vanninathan, Homogenization of eigenvalue problems in perforated domains, Indian Academy of Sciences. Proceedings. Mathematical Sciences 90 pp 239– (1981) · Zbl 0486.35063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.