A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. (English) Zbl 1301.92014

Summary: This paper presents a computational vascular fluid-structure interaction (FSI) methodology and its application to patient-specific aneurysm models of the middle cerebral artery bifurcation. A fully coupled fluid-structural simulation approach is reviewed, and main aspects of mesh generation in support of patient-specific vascular FSI analyses are presented. Quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of FSI modeling as compared to the rigid arterial wall assumption. We demonstrate the importance of including the flexible wall modeling in vascular blood flow simulations by performing a comparison study that involves four patient-specific models of cerebral aneurysms varying in shape and size.
Editor’s note: This article was published in the regular issue Vol. 45, No. 1 instead of the special issue 46, No. 1, where it was originally scheduled to appear.


92C35 Physiological flow
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
76Z05 Physiological flows


Full Text: DOI


[1] Appanaboyina S, Mut F, Löhner R, Putman C, Cebral J (2009) Simulation of intracranial aneurysm stenting: techniques and challenges. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2009.01.017 · Zbl 1229.76116
[2] Badia S, Nobile F, Vergara C (2009) Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput Methods Appl Mech Eng 198: 2768–2784 · Zbl 1228.76079
[3] Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201 · Zbl 1169.76352
[4] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37 · Zbl 1169.74015
[5] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322 · Zbl 1161.74020
[6] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2009.04.015 · Zbl 1229.74096
[7] Bazilevs Y, Hsu M-C, Benson DJ, Sankaran S, Marsden AL (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech (in the same issue) · Zbl 1398.92056
[8] Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12– 26 · Zbl 1115.76040
[9] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259 · Zbl 0497.76041
[10] Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-{\(\alpha\)} method. J Appl Mech 60: 371–375 · Zbl 0775.73337
[11] Custus X. A visualization and navigation system for image-guided surgery based on VTK and ITK. http://www.sintef.no/Home/Health-Research/Medical-technology/
[12] Fernández MA, Gerbeau J-F, Gloria A, Vidrascu M (2008) A partitioned Newton method for the interaction of a fluid and a 3D shell structure. Technical Report RR-6623, INRIA, 2008 · Zbl 1329.74276
[13] Figueroa CA, Baek S, Taylor CA, Humphrey JD (2008) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2008.09.013
[14] Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195: 5685–5706 · Zbl 1126.76029
[15] Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191: 561–582 · Zbl 1007.74035
[16] Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83: 155–165
[17] Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester · Zbl 0980.74001
[18] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195 · Zbl 1151.74419
[19] Hughes TJR, Engel G, Mazzei L, Larson MG (2000) The continuous Galerkin method is locally conservative. J Comput Phys 163: 467–488 · Zbl 0969.65104
[20] Hughes TJR, Oberai AA (2003) Calculation of shear stresses in the Fourier–Galerkin formulation of turbulent channel flows: projection, the Dirichlet filter and conservation. J Comput Phys 188: 281–295 · Zbl 1020.76025
[21] Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of Computational Mechanics, vol 3: Fluids, chapter 2. Wiley, London
[22] Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178
[23] Jansen KE, Collis SS, Whiting C, Shakib F (1999) A better consistency for low-order stabilized finite element methods. Comput Methods Appl Mech Eng 174: 153–170 · Zbl 0956.76044
[24] Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-{\(\alpha\)} method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319 · Zbl 0973.76048
[25] Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39: 359–364
[26] Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2009) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2009.01.022 · Zbl 1227.74112
[27] Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197: 1890–1905 · Zbl 1194.76296
[28] Oshima M, Hughes TJR, Jansen K (1998) Consistent finite element calculations of boundary and internal fluxes. Int J Comput Fluid Dyn 9: 227–235 · Zbl 0917.76039
[29] Pope SB (2001) Large-eddy simulation using projection onto local basis functions. In: Lumley JL (eds) Fluid mechanics and the environment: dynamical approaches. Springer, Heidelberg, pp 239–265 · Zbl 1052.76032
[30] Rank E, Düster A, Nübel V, Preusch K, Bruhns OT (2005) High order finite elements for shells. Comput Methods Appl Mech Eng 194: 2494–2512 · Zbl 1082.74056
[31] Takizawa K, Christopher J, Moorman C, Martin J, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2009) Space-time finite element computation of arterial FSI with patient-specific data. In: Schrefler B, Onate E, Papadrakakis M, (eds) Computational methods for coupled problems in science and engineering, coupled problems. CIMNE, Barcelona
[32] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2009) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Commun Numer Methods Eng (published online) doi: 10.1002/cnm.1241 · Zbl 1180.92023
[33] Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158: 155–196 · Zbl 0953.76058
[34] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575 · Zbl 1032.76605
[35] Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900 · Zbl 1144.74044
[36] Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922 · Zbl 1276.76043
[37] Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int J Numer Methods Fluids 57: 601–629 · Zbl 1230.76054
[38] Tezduyar TE, Schwaab M, Sathe S (2008) Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2008.05.024 · Zbl 1229.74100
[39] Tezduyar TE, Takizawa K (2008) Private communication
[40] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195: 1885–1895 · Zbl 1178.76241
[41] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490 · Zbl 1160.76061
[42] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of the wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168 · Zbl 1113.76105
[43] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159 · Zbl 1169.74032
[44] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2008.08.020 · Zbl 1229.74101
[45] Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195: 3776–3796 · Zbl 1175.76098
[46] Zhang Y, Bajaj C, Sohn BS (2005) 3D finite element meshing from imaging data. Comput Methods Appl Mech Eng 194: 5083–5106 · Zbl 1093.65019
[47] Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42: 131–150
[48] Zhang Y, Xu G, Bajaj C (2006) Quality meshing of implicit salvation models of biomolecular structures. Comput Aided Geom Des 23: 510–530 · Zbl 1098.92034
[49] Zunino P, D’Angelo C, Petrini L, Vergara C, Capelli C, Migliavacca F (2008) Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release. Comput Methods Appl Mech Eng (published online) doi: 10.1016/j.cma.2008.07.019 · Zbl 1229.76122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.