×

zbMATH — the first resource for mathematics

A robust algorithm for identification of the frequency of a sinusoidal signal. (English. Russian original) Zbl 1301.94014
J. Comput. Syst. Sci. Int. 46, No. 3, 371-376 (2007); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2007, No. 3, 39-44 (2007).
Summary: The problem of identification of an unknown frequency of a sinusoidal signal is considered. A new approach to estimating the frequency of a sinusoidal signal that is robust relative to unaccounted perturbations in the measurement of the useful signal is proposed.

MSC:
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
93B35 Sensitivity (robustness)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Bodson and S. C. Douglas, ”Adaptive Algorithms for the Rejection of Periodic Disturbances with Unknown Frequencies,” Automatica 33, 2213–2221 (1997). · Zbl 0900.93146 · doi:10.1016/S0005-1098(97)00149-0
[2] L. Hsu, R. Ortega, and G. Damm, ”A Globally Convergent Frequency Estimator,” IEEE. Trans. Autom. Control 46, 967–972 (1999). · Zbl 0958.93089
[3] M. Mojiri and A. R. Bakhshai, ”An Adaptive Notch Filter for Frequency Estimation of a Periodic Signal,” IEEE Trans. Autom. Control 49, 314–318 (2004). · Zbl 1365.94084 · doi:10.1109/TAC.2003.821414
[4] R. Marino and R. Tomei, ”Global Estimation of Unknown Frequencies,” IEEE Trans. Autom. Control 47, 1324–1328 (2002). · Zbl 1364.93778 · doi:10.1109/TAC.2002.800761
[5] X. Xia, ”Global Frequency Estimation Using Adaptive Identifiers,” IEEE Trans. Autom. Control 47, 1188–1193 (2002). · Zbl 1364.93789 · doi:10.1109/TAC.2002.800670
[6] G. Obregon-Pulido, B. Castillo-Toledo, and A. A. Loukianov, ”Globally Convergent Estimator for N-Frequencies,” IEEE Trans. on Autom. Control 47, 857–863 (2002). · Zbl 1364.62222 · doi:10.1109/TAC.2002.1000286
[7] A. Bobtsov, A. Lyamin, and D. Romasheva, ”Algorithm of Parameter’s Identification of Polyharmonic Function,” in Proceedings of 15th IFAC World Congress on Automatic Control, Barcelona, Spain, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.