×

Galileo’s quanti: understanding infinitesimal magnitudes. (English) Zbl 1302.01006

The author discusses Galilei’s solution to Aristotle’s wheel paradox. Galilei introduced two kinds of infinitesimals: infinitesimal quanti, an infinite number of which produces an infinite sum, and infinitesimal non-quanti or indivisibles, an infinite number of which produces a finite sum. Moreover, an infinitesimal can be either filled or void. Aristotle (or his pupil) wrote about two rotating concentric circles of which the biggest one rolls on a straight line: “How it is that a greater circle when it revolves traces out a path of the same length as a smaller circle, if the two are concentric?” Yet, “when they are revolved separately, then the paths along which they travel are in the same ratio as their respective sizes.” Galilei views circles as polygons with an infinite number of infinitesimal sides. These sides are non-quanti. Galilei explains the paradox by arguing that the line traced out by the smaller circle is just as long as the line traced out by the bigger circle because during the rotation infinitely many void non-quanti are added. The author argues that Galilei’s views on infinitesimals influenced his pupil Torricelli.

MSC:

01A45 History of mathematics in the 17th century
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen, Kirsti. 1985. Cavalieri’s method of indivisibles. Archive for History of Exact Sciences 4: 291–367. · Zbl 0563.01005
[2] Baldini, Ugo. 1977. La struttura della materia nel pensiero di Galileo. De Homine LVI–LVIII: 1–74.
[3] Belloni, Lanfranco. 1987. Torricelli et son époque. Le triumvirat des élèves de Castelli: Magiotti, Nardi et Torricelli. In L’OEuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 147–206. Nice: Les Belles Lettres.
[4] Biener, Z. 2004. Galileo’s first New Science: The science of matter. Perspectives on Science XII: 262–287. · Zbl 1330.01027 · doi:10.1162/1063614042795462
[5] Bortolotti, Ettore. 1925. La memoria ’De Infinitis Hyperbolis’ di Torricelli. Esposizione sistematica. Archivio di storia della scienza 6: 139–152. · JFM 51.0019.09
[6] Bortolotti, Ettore. 1928. I progressi del metodo infinitesimale nell”Opera geometrica’ di Evangelista Torricelli. Periodico di matematiche 8(1): 19–59. · JFM 54.0027.02
[7] Bortolotti, Ettore. 1939. L’OEuvre géométrique d’Evangéliste Torricelli. Monatshefte für Mathematik und Physik 48. Reprinted in L’OEuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 111–146. Nice: Les Belles Lettres.
[8] De Gandt, François. 1987. Les indivisibles de Torricelli. In L’OEuvre de Torricelli: science galiléenne et nouvelle géométrie, ed. François De Gandt, 147–206. Nice: Les Belles Lettres.
[9] De Gandt, François. 1991a. Sur la détermination du mouvement selon Aristote et les conditions d’une mathématisation. In La physique d’Aristote et les conditions d’une science de la nature, ed. François De Gandt, and Pierre Souffrin, 85–105. Paris: VRIN.
[10] De Gandt, François. 1991b. Cavalieri’s indivisibles and Euclid’s Canons. In Revolution and continuity, essays in the history and philosophy of early modern science, ed. R. Ariew, and P. Barker, 157–182. Washington: Catholic University of America.
[11] De Gandt, François. 1992. L’évolution de la théorie des indivisibles et l’apport de Torricelli. In Geometria e atomismo nella scuola galileiana, ed. Massimo Bucciantini e Maurizio Torrini, 103–118. Firenze: L.S. Olschki. · Zbl 0940.01003
[12] De Gandt, François. 1995. Force and geometry in Newton’s principia. Princeton: Princeton University Press. · Zbl 0830.01007
[13] Drabkin, Israel E. 1950. Aristotle’s wheel: Notes on the history of a paradox. Osiris 9: 162–198. · Zbl 0041.33717 · doi:10.1086/368528
[14] Drake, Stillman. 1974a. Galileo Galilei: Two New Sciences. Madison: The University of Wisconsin Press. · Zbl 0333.01010
[15] Drake, Stillman. 1974b. Mathematics and discovery in Galileo’s physics. Historia Mathematica 1: 129–150. · Zbl 0279.01003 · doi:10.1016/0315-0860(74)90002-0
[16] Drake, Stillman. 1979. Galileo’s notes on motion. Supplement of Annali dell’Istituto e Museo di Storia della Scienza 3. Firenze: Istituto e Museo di Storia della Scienza.
[17] Festa, Egidio. 1992. La notion d’ ’agrégat d’indivisibles’ dans la constitution de la cinématique galiléenne: Cavalieri, Galilée, Torricelli. Etudes sur Galilée 45(2–3): 307–336. · Zbl 0776.01006
[18] Galilei, Galileo. 1890–1909. Le opere di Galileo Galilei. In Edizione Nazionale, 20 vols, ed. Antonio Favaro. Florence: Barbèra. · JFM 34.0008.02
[19] Galluzzi, Paolo. 1979. Momento. Roma: Edizioni dell’Ateneo & Bizzarri.
[20] Galluzzi, Paolo. 2001. Tra atomi e indivisibili. La materia ambigua di Galileo. Lessico Intellettuale Europeo. Firenze: Leo S. Olschki Editore.
[21] Giusti, Enrico. 1980. Bonaventura Cavalieri and the theory of indivisibles. Rome: Cremonese. · Zbl 0933.01003
[22] Giusti, Enrico. 1986. Ricerche galileiane: il trattato ’De motu aequabili’ come modello della teoria delle proporzioni. Bollettino di Storia delle Scienze Matematiche 6: 89–108. · Zbl 0629.01008
[23] Giusti, Enrico. 1989. Evangelista Torricelli continuatore di Galileo. Torricelliana 40: 13–25.
[24] Giusti, Enrico. 1993. Euclides reformatus: la teoria delle proporzioni nella scuola galileiana. Torino: Bollati-Boringhieri. · Zbl 0931.01007
[25] Hill, David K. 1986. Galileo’s work on 116v: A new analysis. Isis 77: 283–291. · Zbl 0596.01013 · doi:10.1086/354132
[26] Jacoli, Ferdinando. 1875. Evangelista Torricelli ed il metodo delle tangenti detto metodo di Roberval. Bollettino di bibliografia e di storia delle scienze matematiche e fisiche 8: 265–304. · JFM 07.0021.02
[27] Koyré, Alexandre. 1939. Études galiléennes. Paris: Hermann.
[28] Loria, Gino. 1897. Evangelista Torricelli e la prima rettificazione di una curva. Atti della Reale Accademia dei Lincei V/6: 318–323. · JFM 28.0048.01
[29] Murdoch, J.E. 2001. The medieval and renaissance tradition of ’Minima naturalia’. Late Medieval and Early Modern Corpuscolar Matter Theories 91–131.
[30] Naylor, Ronald H. 1990. Galileo’s method of analysis and synthesis. Isis 81: 675–707. · doi:10.1086/355546
[31] Paolo, Palmieri. 2001. The obscurity of the equimultiples. Archive for History of Exact Sciences 55: 555–597. · Zbl 0987.01006 · doi:10.1007/s004070100037
[32] Paolo, Palmieri. 2006. A new look at Galileo’s search for mathematical proofs. Archive for History of Exact Sciences 60: 285–317. · Zbl 1107.01004 · doi:10.1007/s00407-006-0109-5
[33] Redondi, Pietro. 1985. Atomi, indivisibili e dogma. Quaderni Storici XX/59: 529–573.
[34] Roux, Sophie. 2010. Forms of mathematization (14th–17th centuries). Early Science and Medicine 15:4–5. doi: 10.1163/157338210X516242 . · Zbl 1252.01023
[35] Shea, William. 1983. Nature mathematized. Historical and philosophical case studies in classical modern natural philosophy. Dordrecht: Kluwer.
[36] Shea, William R. 2001. Galileo e l’atomismo. Acta Philosophica 10/2:257–272. Roma: Armando Editore.
[37] Torricelli, Evangelista. 1919–1944. Opere. Eds. Gino Loria and Giuseppe Vassura. Faenza: G. Montanari.
[38] Wisan, Winifred L. 1974. The New Science of motion: A study of Galileo’s ’De motu locali. Archive for History of Exact Sciences 13: 103–306. · Zbl 0335.01010 · doi:10.1007/BF00327483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.