# zbMATH — the first resource for mathematics

Homology computations for complex braid groups. (English) Zbl 1302.20049
Complex braid groups are defined as follows: let $$W$$ be a complex reflection group, i.e. a finite group generated by finite order endomorphisms of $$\mathrm{GL}_r(\mathbb C)$$ that leave invariant some hyperplane in $$\mathbb C^r$$. Let $$\mathcal A$$ be the (central) hyperplane arrangement associated to the reflections of $$W$$, and let $$X=\mathbb C^r\setminus\bigcup\mathcal A$$ be the corresponding hyperplane complement. The generalized braid group $$B=\pi_1(X/W)$$ is an extension of $$W$$ by $$P=\pi_1(X)$$. These braid groups are parametrized by three integers $$B(de,e,r)$$ with 34 exceptional cases $$B_4,\ldots,B_{37}$$. The full classification of these groups is not yet fully understood.
The authors give some partial classifications of these braid groups, some specific calculations of their homology in low degrees and some results about the stability behavior of their homology. Here are some examples of their results:
Theorem 6.4. Let $$B=B(e,e,r)$$ and $$r\geq 3$$. Then $H_2(B;\mathbb Z)\cong\begin{cases}\mathbb Z/e &\text{for }r=3,\\ \mathbb Z/e\times\mathbb Z/2 &\text{for }r=4\text{ and odd }e,\\ \mathbb Z/e\times(\mathbb Z/2)^2 &\text{for }r=4\text{ and even }e,\text{ and}\\ \mathbb Z/e\times\mathbb Z/2 &\text{for }r\geq 5.\end{cases}$ As for stability results, we have the following Theorem. Let $$p$$ be an odd prime, the homology group $$H_*(B(2e,e,\infty);\mathbb F_p)$$ is isomorphic to: $\lim_{r\to\infty}H_*(B(2e,e,r);\mathbb F_p)\cong\mathbb F_p[w_1,\overline y_1,\overline y_2,\ldots]\otimes\Lambda[\overline x_0,\overline x_1,\ldots],$ where $$\dim(w_1)=1$$, $$\dim(\overline x_i)=2p^i-1$$ and $$\dim(\overline y_i)=2p^i-2$$. Moreover, the canonical morphism $H_i(B(2e,e,r);\mathbb F_p)\to H_i(B(2e,e,\infty);\mathbb F_p)$ is an isomorphism for $$r>(i-1)\frac{p}{p-1}+2$$.

##### MSC:
 20J05 Homological methods in group theory 20J06 Cohomology of groups 20F36 Braid groups; Artin groups 20F55 Reflection and Coxeter groups (group-theoretic aspects)
Full Text:
##### References:
  Bannai, E.: Fundamental groups of the spaces of regular orbits of the finite uni- tary reflection groups of dimension 2. J. Math. Soc. Japan 28, 447-454 (1976) · Zbl 0326.57015  Bessis, D., Corran, R.: Non-crossing partitions of type (e, e, r). Adv. Math. 202, 1-49 (2006) · Zbl 1128.20024  Bessis, D.: Finite complex reflection arrangements are K(\pi , 1). · Zbl 1372.20036  Bessis, D., Michel, J.: Explicit presentations for exceptional braid groups. Experiment. Math. 13, 257-266 (2004) · Zbl 1092.20033  Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127-190 (1998) · Zbl 0921.20046  Bonnafé, C.: Une (nouvelle?) construction du groupe de réflexion complexe G31. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 45 (93), 133-143 (2002) · Zbl 1084.20509  Brieskorn, E.: Sur les groupes de tresses [d’apr‘es V. I. Arnol’d]. In: Séminaire Bour- baki, 24‘eme année (1971/1972), exp. 401, Lecture Notes in Math. 317, Springer, Berlin, 21-44 (1973) · Zbl 0277.55003  Brown, K. S.: Cohomology of Groups. Grad. Texts in Math. 87, Springer, New York (1982) · Zbl 0584.20036  Callegaro, F.: The homology of the Milnor fiber for classical braid groups. Algebr. Geom. Topol. 6, 1903-1923 (2006) · Zbl 1166.20044  Callegaro, F., Moroni, D., Salvetti, M.: Cohomology of affine Artin groups and applica- tions. Trans. Amer. Math. Soc. 360, 4169-4188 (2008) · Zbl 1191.20056  Charney, R., Meier, J., Whittlesey, K.: Bestvina’s normal form complex and the ho- mology of Garside groups. Geom. Dedicata 105, 171-188 (2004) · Zbl 1064.20044  Cohen, F. R.: The homology of Cn+1-spaces, n \geq 0. In: Homology of Iterated Loop Spaces, Lecture Notes in Math. 533, Springer, 207-353 (1976) · Zbl 0334.55009  Cohen, F. R.: Artin’s braid groups, classical homotopy theory, and sundry other cu- riosities. In: Braids (Santa Cruz, CA, 1986), Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 167-206 (1988) · Zbl 0577.20026  Corran, R., Picantin, M.: A new Garside structure for the braid groups of type (e, e, r). J. London Math. Soc. 84, 689-711 (2011) · Zbl 1239.20042  Crisp, J.: Injective maps between Artin groups. In: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 119-137 (1999) · Zbl 1001.20034  Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273- 302 (1972) · Zbl 0238.20034  Dehornoy, P., Lafont, Y.: Homology of Gaussian groups. Ann. Inst. Fourier (Grenoble) 53, 489-540 (2003) · Zbl 1100.20036  Digne, F., Marin, I., Michel, J.: The center of pure complex braid groups. J. Algebra 347, 206-213 (2011) · Zbl 1241.20039  Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. London Math. Soc. (3) 79, 569-604 (1999) · Zbl 1030.20021  De Concini, C., Procesi, C., Salvetti, M.: Arithmetic properties of the cohomology of braid groups. Topology 40, 739-751 (2001) · Zbl 0999.20046  De Concini, C., Procesi, C., Salvetti, M., Stumbo, F.: Arithmetic properties of the coho- mology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28, 695-717 (1999) · Zbl 0973.20025  Fadell, E., Neuwirth, L.: Configuration spaces. Math. Scand. 10, 111-118 (1962) · Zbl 0136.44104  Fuks, D. B.: Cohomology of the braid group mod 2. Funct. Anal. Appl. 4, 143-151 (1970) · Zbl 0222.57031  Fuks, D. B.: Quillenization and bordism. Funktsional. Anal. i Prilozhen. 8, no. 1, 36-42 (1974) (in Russian) · Zbl 0324.57024  Gorjunov, V. V.: Cohomology of braid groups of series C and D. Trudy Moskov. Mat. Obshch. 42, 234-242 (1981) (in Russian) · Zbl 0547.55016  Kent IV, R. P., Peifer, D.: A geometric and algebraic description of annular braid groups. Internat. J. Algebra Comput. 12, 85-97 (2002) · Zbl 1010.20024  Kobayashi, Y.: Complete rewriting systems and homology of monoid algebras. J. Pure Appl. Algebra 65, 263-275 (1990) · Zbl 0711.20035  Lehrer, G. I.: Poincaré polynomials for unitary reflection groups. Invent. Math. 120, 411-425 (1995) · Zbl 0831.20049  Lehrer, G. I.: Rational points and cohomology of discriminant varieties. Adv. Math. 186, 229-250 (2004) · Zbl 1077.14025  Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Interscience Publ., New York (1966) · Zbl 0138.25604  Michel, J.: Homepage of the development version of the GAP part of CHEVIE.  Nakamura, T.: A note on the K(\pi , 1) property of the orbit space of the unitary re- flection group G(m, l, n). Sci. Papers College Arts Sci. Univ. Tokyo 33, 1-6 (1983) · Zbl 0524.20027  Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren Math. Wiss. 300, Springer, Berlin (1992) · Zbl 0757.55001  Paris, L.: Artin groups of spherical type up to isomorphism. J. Algebra 281, 666-678 (2004) · Zbl 1080.20033  Picantin, M.: Petits groupes gaussiens. Ph.D. thesis, Univ. de Caen (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.