×

zbMATH — the first resource for mathematics

FGMRES for linear discrete ill-posed problems. (English) Zbl 1302.65081
Summary: GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES does not always perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear discrete ill-posed problems. The FGMRES method, proposed by Saad, is a generalization of GMRES that allows larger flexibility in the choice of solution subspace than GMRES. This paper explores application of FGMRES to the solution of linear discrete ill-posed problems. Numerical examples illustrate that FGMRES with a suitably chosen solution subspace may determine approximate solutions of higher quality than commonly applied iterative methods.

MSC:
65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65F22 Ill-posedness and regularization problems in numerical linear algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baart, M. L., The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems, IMA J. Numer. Anal., 2, 241-247, (1982) · Zbl 0484.65021
[2] Baglama, J.; Reichel, L., Decomposition methods for large linear discrete ill-posed problems, J. Comput. Appl. Math., 198, 332-342, (2007) · Zbl 1106.65035
[3] Baglama, J.; Reichel, L., Augmented GMRES-type methods, Numer. Linear Algebra Appl., 14, 337-350, (2007) · Zbl 1199.65096
[4] Bouhamidi, A.; Jbilou, K.; Reichel, L.; Sadok, H., An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure, Linear Algebra Appl., 434, 1677-1688, (2011) · Zbl 1210.65091
[5] Calvetti, D.; Lewis, B.; Reichel, L., Restoration of images with spatially variant blur by the GMRES method, (Luk, F. T., Advanced Signal Processing Algorithms, Architectures, and Implementations X, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 4116, (2000), The International Society for Optical Engineering Bellingham, WA), 364-374
[6] Calvetti, D.; Lewis, B.; Reichel, L., On the choice of subspace for iterative methods for linear discrete ill-posed problems, Int. J. Appl. Math. Comput. Sci., 11, 1069-1092, (2001) · Zbl 0994.65043
[7] Calvetti, D.; Lewis, B.; Reichel, L., GMRES, L-curves, and discrete ill-posed problems, BIT, 42, 44-65, (2002) · Zbl 1003.65040
[8] Calvetti, D.; Reichel, L.; Shuibi, A., Invertible smoothing preconditioners for linear discrete ill-posed problems, Appl. Numer. Math., 54, 135-149, (2005) · Zbl 1072.65057
[9] Delves, L. M.; Mohamed, J. L., Computational methods for integral equations, 310, (1985), Cambridge University Press · Zbl 0592.65093
[10] Golub, G. H.; Van Loan, C. F., Matrix computations, (1996), Johns Hopkins University Press Baltimore · Zbl 0865.65009
[11] Hanke, M., Conjugate gradient type methods for ill-posed problems, (1995), Longman Harlow · Zbl 0830.65043
[12] Hansen, P. C.; Jensen, T. K., Smoothing norm preconditioning for regularizing minimum residual methods, SIAM J. Matrix Anal. Appl., 29, 1-14, (2006) · Zbl 1154.65028
[13] Hansen, P. C.; Jensen, T. K., Noise propagation in regularizing iterations for image deblurring, Electron. Trans. Numer. Anal., 31, 204-220, (2008) · Zbl 1171.65032
[14] Hansen, P. C.; Jensen, T. K.; Rodriguez, G., An adaptive pruning algorithm for the discrete L-curve criterion, J. Comput. Appl. Math., 198, 483-492, (2007) · Zbl 1101.65044
[15] Kindermann, S., Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems, Electron. Trans. Numer. Anal., 38, 233-257, (2011) · Zbl 1287.65043
[16] Morigi, S.; Reichel, L.; Sgallari, F., Orthogonal projection regularization operators, Numer. Algorithms, 44, 99-114, (2007) · Zbl 1124.65043
[17] Nemirovskii, A. S., The regularization properties of the adjoint gradient method in ill-posed problems, USSR Comput. Math. Math. Phys., 26, 2, 7-16, (1986)
[18] Neuman, A.; Reichel, L.; Sadok, H., Implementations of range restricted iterative methods for linear discrete ill-posed problems, Linear Algebra Appl., 436, 3974-3990, (2012) · Zbl 1241.65045
[19] Neuman, A.; Reichel, L.; Sadok, H., Algorithms for range restricted iterative methods for linear discrete ill-posed problem, Numer. Algorithms, 59, 325-331, (2012) · Zbl 1236.65040
[20] Paige, C. C.; Saunders, M. A., LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8, 43-71, (1982) · Zbl 0478.65016
[21] Phillips, D. L., A technique for the numerical solution of certain integral equations of the first kind, J. ACM, 9, 84-97, (1962) · Zbl 0108.29902
[22] Reichel, L.; Sadok, H., A new L-curve for ill-posed problems, J. Comput. Appl. Math., 219, 493-508, (2008) · Zbl 1145.65035
[23] Reichel, L.; Ye, Q., Breakdown-free GMRES for singular systems, SIAM J. Matrix Anal. Appl., 26, 1001-1021, (2005) · Zbl 1086.65030
[24] Reichel, L.; Ye, Q., Simple square smoothing regularization operators, Electron. Trans. Numer. Anal., 33, 63-83, (2009) · Zbl 1171.65033
[25] Reichel, L.; Rodriguez, G.; Seatzu, S., Error estimates for large-scale ill-posed problems, Numer. Algorithms, 51, 341-361, (2009) · Zbl 1166.65332
[26] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 461-469, (1993) · Zbl 0780.65022
[27] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, (1986) · Zbl 0599.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.