×

On the controllability of fractional dynamical systems. (English) Zbl 1302.93042

Summary: This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder’s fixed-point theorem and the controllability Gramian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.

MSC:

93B05 Controllability
35R11 Fractional partial differential equations
35C20 Asymptotic expansions of solutions to PDEs
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics

Software:

CRONE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, J.L. and Hartley, T.T. (2008). Finite time controllability of fractional order systems, Journal of Computational and Nonlinear Dynamics 3(2): 021402-1-021402-5.;
[2] Al Akaidi, M. (2008). Fractal Speech Processing, Cambridge University Press, Cambridge.; · Zbl 1082.94003
[3] Arena, P., Caponetta, R., Fortuna L. and Porto, D. (2008). Nonlinear Noninteger Order Circuits and Systems: An Introduction, World Scientific Series on Nonlinear Science, Vol. 38, World Scientific, Singapore.;
[4] Balachandran, K. and Dauer, J.P. (1987). Controllability of nonlinear systems via fixed point theorems, Journal of Optimization Theory and Applications 53(3): 345-352.; · Zbl 0596.93010
[5] Balachandran, K. and Kiruthika, S. (2010). Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations 4: 1-12.; · Zbl 1201.34091
[6] Balachandran, K. and Trujillo, J.J. (2010). The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Analysis: Theory, Methods and Applications 72(12): 4587-4593.; · Zbl 1196.34007
[7] Balachandran, K., Kiruthika, S. and Trujillo, J.J. (2011). Existence results for fractional impulsive integrodifferential equations in Banach spaces, Communication in Nonlinear Science and Numerical Simulation 16(4): 1970-1977.; · Zbl 1221.34215
[8] Balachandran, K., Park J.Y. and Trujillo, J.J. (2012). Controllability of nonlinear fractional dynamical systems, Nonlinear Analysis: Theory, Methods & Applications 75(4): 1919-1926.; · Zbl 1277.34006
[9] Benson, D.A., Wheatcraft, S.W. and Meerschaert, M.M. (2000). Application of a fractional advection-dispersion equation, Water Resources Research 36(6): 1403-1412.;
[10] Bettayeb, M. and Djennoune, S. (2008). New results on the controllability and observability of fractional dynamical systems, Journal of Vibrating and Control 14(9-10): 1531-1541.; · Zbl 1229.93018
[11] Bonilla, B., Rivero, M. and Trujillo, J.J. (2007). On systems of linear fractional differential equations with constant coefficients, Applied Mathematics and Computation 187(1): 68-78.; · Zbl 1121.34006
[12] Caputo, M. (1967 ). Linear model of dissipation whose Q is almost frequency independent, Part II, Geophysical Journal of Royal Astronomical Society 13(5): 529-539.;
[13] Chen, Y.Q., Ahn, H.S. and Xue, D. (2006). Robust controllability of interval fractional order linear time invariant systems, Signal Processing 86(10): 2794-2802.; · Zbl 1172.94386
[14] Chikrii, A.A. and Matichin, I.I. (2008). Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross, Journal of Automation and Information Sciences 40(6): 1-11.;
[15] Chikrii, A. and Matichin, I.I. (2010). Game problems for fractional order systems, in D. Baleanu, Z.B. Guvenc and J.A.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 233-241.; · Zbl 1303.91042
[16] Do, V.N. (1990). Controllability of semilinear systems, Journal of Optimization Theory and Applications 65(1): 41-52.; · Zbl 0674.93006
[17] Guermah, S.A., Djennoune, S.A. and Bettayeb, M.A.(2008). Controllability and observability of linear discrete time fractional order systems, International Journal of Applied Mathematics and Computer Science 18(2): 213-222, DOI: 10.2478/v10006-008-0019-6.; · Zbl 1234.93014
[18] Herrmann, R. (2011). Fractional Calculus: An Introduction for Physicists, World Scientific Publishing, Singapore.; · Zbl 1232.26006
[19] Ichise, M., Nagayanagi, Y. and Kojima, T. (1971). Analog simulation of non integer order transfer functions for analysis of electrode processes, Journal of Electroanalytical Chemistry 33(2): 253-265.;
[20] Karthikeyan, S. and Balachandran, K. (2011). Constrained controllability of nonlinear stochastic impulsive systems, International Journal of Applied Mathematics and Computer Science 21(2): 307-316, DOI: 10.2478/v10006-011-0023-0.; · Zbl 1282.93053
[21] Kexue, L. and Jigen, P. (2011). Laplace transform and fractional differential equations, Applied Mathematics Letters 24(12): 2019-2023.; · Zbl 1238.34013
[22] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, New York, NY.; · Zbl 1092.45003
[23] Klamka, J. (1993). Controllability of Dynamical Systems, Kluwer Academic, Dordrecht.; · Zbl 0818.93002
[24] Klamka, J. (2008). Constrained controllability of semilinear systems with delayed controls, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 333-337.;
[25] Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete time systems, in D. Baleanu, Z.B. Guvenc and J.A.T. Machado (Eds.), New Trends in Nanotechnology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503-509.; · Zbl 1222.93030
[26] Liu, F., Anh, V.V., Turner, I. and Zhuang, P. (2003). Time fractional advection-dispersion equation, Journal of Applied Mathematics and Computing 13(1-2): 233-245.; · Zbl 1068.26006
[27] Machado, J.T., Kiryakova, V. and Mainardi, F. (2011). Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulations 16(3): 1140-1153.; · Zbl 1221.26002
[28] Machado, J.T. (1997). Analysis and design of fractional order digital control systems, Systems Analysis, Modelling and Simulation 27(2-3): 107-122.; · Zbl 0875.93154
[29] Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Physics Reports 339(1): 1-77.; · Zbl 0984.82032
[30] Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.; · Zbl 0789.26002
[31] Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D. and Feliu, V. (2010). Fractional-order Systems and Controls: Fundamentals and Applications, Springer, London.; · Zbl 1211.93002
[32] Oldham, K.B., and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.; · Zbl 0292.26011
[33] Oustaloup, A. (1991). La Commade CRONE: Commande Robuste d’Ordre Non Entier, Herm‘es, Paris.; · Zbl 0864.93003
[34] Podlubny, I. (1999a). Fractional Differential Equations, Academic Press, London.; · Zbl 0924.34008
[35] Podlubny, I. (1999b). Fractional-order systems and PIλDμ controllers, IEEE Transactions on Automatic Control 44(1): 208-214.; · Zbl 1056.93542
[36] Renardy, M., Hrusa, W.J. and Nohel, J.A.(1987). Mathematical Problems in Viscoelasticity, Longman Scientific and Technical, New York, NY.; · Zbl 0719.73013
[37] Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordan and Breach, Amsterdam.; · Zbl 0818.26003
[38] Shamardan, A.B. andMoubarak, M.R.A. (1999). Controllability and observability for fractional control systems, Journal of Fractional Calculus 15(1): 25-34.; · Zbl 0964.93013
[39] Valerio, D. and Sa da Costa, J. (2004). Non integer order control of a flexible robot, Proceedings of the IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, pp. 520-525.;
[40] West, B.J., Bologna, M. and Grigolini, P. (2003). Physics of Fractal Operators, Springer-Verlag, Berlin.;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.