×

zbMATH — the first resource for mathematics

Ramanujan’s master theorem applied to the evaluation of Feynman diagrams. (English) Zbl 1303.33016
Summary: Ramanujan’s master theorem is a technique developed by S. Ramanujan to evaluate a class of definite integrals. This technique is used here to produce the values of integrals associated with Feynman diagrams.

MSC:
33C67 Hypergeometric functions associated with root systems
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amdeberhan, T.; Espinosa, O.; Gonzalez, I.; Harrison, M.; Moll, V.; Straub, A., Ramanujan’s master theorem, Ramanujan J., 29, 103-120, (2012) · Zbl 1258.33001
[2] Boos, E. E.; Davydychev, A. I., A method of evaluating massive Feynman integrals, Theoret. and Math. Phys., 89, 1052-1063, (1991)
[3] Davydychev, A. I., Some exact results for n-point massive Feynman integrals, J. Math. Phys., 32, 1052-1060, (1991) · Zbl 0729.58054
[4] Gonzalez, I.; Kohl, K.; Moll, V., Evaluation of entries in gradshteyn and ryzhik employing the method of brackets, Sci. Ser. A Math. Sci. (N.S.), 25, 65-84, (2014) · Zbl 1312.33011
[5] I. Gonzalez, K. Kohl, V. Moll, The automatization of the method of brackets, 2015, in preparation.
[6] Gonzalez, I.; Moll, V., Definite integrals by the method of brackets. part 1, Adv. in Appl. Math., 45, 50-73, (2010) · Zbl 1190.33003
[7] Gonzalez, I.; Schmidt, I., Optimized negative dimensional integration method (NDIM) and multiloop Feynman diagram calculation, Nuclear Phys. B, 769, 124-173, (2007) · Zbl 1117.81138
[8] Gradshteyn, I. S.; Ryzhik, I. M., Table of integrals, series, and products, (2015), Academic Press New York, D. Zwillinger, V. Moll (Eds.) · Zbl 0918.65002
[9] Hardy, G. H., Ramanujan. twelve lectures on subjects suggested by his life and work, (1978), Chelsea Publishing Company New York, NY · Zbl 0027.19608
[10] Kohl, K., Algorithmic methods for definite integration, (2011), Tulane University, PhD thesis
[11] Smirnov, V. A., Feynman integral calculus, (2006), Springer-Verlag Berlin, Heildelberg
[12] Veltman, M., Diagrammatica. the path to Feynman diagrams, Cambridge Lecture Notes Phys., vol. 4, (1994), Cambridge University Press
[13] Zee, A., Quantum field theory in a nutshell, (2010), Princeton University Press · Zbl 1277.81001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.