×

zbMATH — the first resource for mathematics

Linearized stationary incompressible flow around rotating and translating bodies – Leray solutions. (English) Zbl 1304.35536
Summary: We consider Leray solutions of the Oseen system with rotational terms, in an exterior domain. Such solutions are characterized by square-integrability of the gradient of the velocity and local square-integrability of the pressure. In a previous paper [the authors, J. Differ. Equations 255, No. 7, 1576–1606 (2013; Zbl 1284.35306)], we had shown a pointwise decay result for a slightly stronger type of solution. Here this result is extended to Leray solutions. We thus present a second access to this result, besides the one in [G. P. Galdi and M. Kyed, Arch. Ration. Mech. Anal. 200, No. 1, 21–58 (2011; Zbl 1229.35176)].

MSC:
35Q35 PDEs in connection with fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
35J57 Boundary value problems for second-order elliptic systems
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Deuring, A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies,, Discrete Contin. Dyn. Syst. Ser. S, 3, 237, (2010) · Zbl 1193.35127
[2] P. Deuring, On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies,, SIAM J. Math. Anal., 43, 705, (2011) · Zbl 1231.35143
[3] P. Deuring, Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity,, J. Differential Equations, 252, 459, (2012) · Zbl 1238.35097
[4] P. Deuring, A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient,, in Discrete Contin. Dyn. Syst. 2011, 351, (2011) · Zbl 1306.35083
[5] P. Deuring, Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity,, J. of Differential Equations, 255, 1576, (2013) · Zbl 1284.35306
[6] R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z., 211, 409, (1992) · Zbl 0727.35106
[7] R. Farwig, An \(L^q\)-analysis of viscous fluid flow past a rotating obstacle,, Tôhoku Math. J., 58, 1, (2006) · Zbl 1136.76340
[8] R. Farwig, Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle,, Banach Center Publications, 70, 73, (2005) · Zbl 1101.35348
[9] R. Farwig, Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body,, Pacific J. Math., 253, 367, (2011) · Zbl 1234.35035
[10] R. Farwig, Stationary Navier-Stokes flow around a rotating obstacle,, Funkcialaj Ekvacioj, 50, 371, (2007) · Zbl 1180.35408
[11] R. Farwig, Asymptotic profiles of steady Stokes and Navier-Stokes flows around a rotating obstacle,, Ann. Univ. Ferrara, 55, 263, (2009) · Zbl 1205.35191
[12] R. Farwig, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscripta Math., 136, 315, (2011) · Zbl 1229.35172
[13] R. Farwig, Leading term at infinity of steady Navier-Stokes flow around a rotating obstacle,, Math. Nachr., 284, 2065, (2011) · Zbl 1229.35173
[14] R. Farwig, \(L^q\)-theory of a singular ”winding” integral operator arising from fluid dynamics,, Pacific J. Math., 215, 297, (2004) · Zbl 1057.35028
[15] R. Farwig, A weighted \(L^q\) approach to Stokes flow around a rotating body,, Ann. Univ. Ferrara, 54, 61, (2008) · Zbl 1248.35158
[16] R. Farwig, A weighted \(L^q\)-approach to Oseen flow around a rotating body,, Math. Meth. Appl. Sci., 31, 551, (2008) · Zbl 1132.76015
[17] R. Farwig, On the spectrum of a Stokes-type operator arising from flow around a rotating body,, Manuscripta Math., 122, 419, (2007) · Zbl 1126.35050
[18] G. P. Galdi, <em>An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearised Steady Problems</em>,, Springer Tracts in Natural Philosophy, (1998)
[19] G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in Handbook of Mathematical Fluid Dynamics. Vol. I (eds. S. Friedlander and D. Serre), 653, (2002) · Zbl 1230.76016
[20] G. P. Galdi, <em>An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems</em>,, 2nd edition, (2011) · Zbl 1245.35002
[21] G. P. Galdi, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Rat. Mech. Anal., 200, 21, (2011) · Zbl 1229.35176
[22] G. P. Galdi, Asymptotic behavior of a Leray solution around a rotating obstacle,, Progress in Nonlinear Differential Equations and Their Applications, 60, 251, (2011) · Zbl 1247.35168
[23] G. P. Galdi, A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Am. Math. Soc., 141, 573, (2013) · Zbl 1261.35106
[24] G. P. Galdi, A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Am. Math. Soc., 141, 1313, (2013) · Zbl 1260.35111
[25] G. P. Galdi, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rat. Mech. Anal., 176, 331, (2005) · Zbl 1081.35076
[26] G. P. Galdi, The steady motion of a Navier-Stokes liquid around a rigid body,, Arch. Rat. Mech. Anal., 184, 371, (2007) · Zbl 1111.76010
[27] G. P. Galdi, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake,, RIMS Kôkyûroku Bessatsu, B1, 108, (2008)
[28] R. B. Guenther, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions - time dependent case,, J. Math. Fluid Mech., 8, 77, (2006) · Zbl 1125.35076
[29] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150, 307, (1999) · Zbl 0949.35106
[30] T. Hishida, The Stokes operator with rotating effect in exterior domains,, Analysis, 19, 51, (1999) · Zbl 0938.35114
[31] T. Hishida, \(L^q\) estimates of weak solutions to the stationary Stokes equations around a rotating body,, J. Math. Soc. Japan, 58, 744, (2006) · Zbl 1184.35241
[32] T. Hishida, \(L_p\)-\(L_q\) estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle,, RIMS Kôkyûroku Bessatsu, B1, 167, (2007)
[33] S. Kračmar, On the \(L^q\)-approach with generalized anisotropic weights of the weak solution of the Oseen flow around a rotating body,, Nonlinear Analysis, 71, (2009) · Zbl 1239.76020
[34] S. Kračmar, Estimates of weak solutions in anisotropically weighted Sobolev spaces to the stationary rotating Oseen equations,, IASME Transactions, 2, 854, (2005)
[35] S. Kračmar, Anisotropic \(L^2\) estimates of weak solutions to the stationary Oseen type equations in \( \mathbbR ^{3}\) for a rotating body,, RIMS Kôkyûroku Bessatsu, B1, 219, (2007) · Zbl 1153.35060
[36] S. Kračmar, Anisotropic \(L^2\) estimates of weak solutions to the stationary Oseen type equations in 3D - exterior domain for a rotating body,, J. Math. Soc. Japan, 62, 239, (2010) · Zbl 1186.35163
[37] S. Kračmar, Variational properties of a generic model equation in exterior 3D domains,, Funkcialaj Ekvacioj, 47, 499, (2004) · Zbl 1114.35053
[38] S. Kračmar, New regularity results for a generic model equation in exterior 3D domains,, Banach Center Publications Warsaw, 70, 139, (2005) · Zbl 1101.35350
[39] M. Kyed, Asymptotic profile of a linearized flow past a rotating body,, Quart. Appl. Math., 71, 489, (2013) · Zbl 1273.35214
[40] M. Kyed, On the asymptotic structure of a Navier-Stokes flow past a rotating body,, to appear in J. Math. Soc. Japan. · Zbl 1296.35122
[41] M. Kyed, On a mapping property of the Oseen operator with rotation,, Discrete Contin. Dynam. Syst. - Ser. S., 6, 1315, (2013) · Zbl 1260.35117
[42] Š. Nečasová, Asymptotic properties of the steady fall of a body in viscous fluids,, Math. Meth. Appl. Sci., 27, 1969, (2004) · Zbl 1174.76306
[43] Š. Nečasová, On the problem of the Stokes flow and Oseen flow in \(\mathbbR^{3}\) with Coriolis force arising from fluid dynamics,, IASME Transaction, 2, 1262, (2005)
[44] Š. Nečasová, Strong solution to the Stokes equations of a flow around a rotating body in weighted \(L^q\) spaces,, Math. Nachr., 284, 1701, (2011) · Zbl 1291.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.