×

Painlevé singularity structure analysis of three component Gross-Pitaevskii type equations. (English) Zbl 1304.35645

Summary: In this paper, we have studied the integrability nature of a system of three-coupled Gross-Pitaevskii type nonlinear evolution equations arising in the context of spinor Bose-Einstein condensates by applying the Painlevé singularity structure analysis. We show that only for two sets of parametric choices, corresponding to the known integrable cases, the system passes the Painlevé test. {
©2009 American Institute of Physics}

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/978-3-642-55688-3 · doi:10.1007/978-3-642-55688-3
[2] Ablowitz M. J., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1992)
[3] Kivshar Y. S., Optical Solitons: From Fibers to Photonic Crystals (2003)
[4] Dauxois T., Physics of Solitons (2006) · Zbl 1192.35001
[5] Scott A. C., Nonlinear Science: Emergence and Dynamics of Coherent Structures (1999) · Zbl 0927.35002
[6] DOI: 10.1063/1.524491 · Zbl 0445.35056 · doi:10.1063/1.524491
[7] DOI: 10.1016/0375-9601(82)90291-2 · doi:10.1016/0375-9601(82)90291-2
[8] DOI: 10.1063/1.525721 · Zbl 0514.35083 · doi:10.1063/1.525721
[9] DOI: 10.1063/1.526009 · Zbl 0565.35094 · doi:10.1063/1.526009
[10] DOI: 10.1016/0370-1573(93)90081-N · doi:10.1016/0370-1573(93)90081-N
[11] DOI: 10.1088/0305-4470/19/10/019 · doi:10.1088/0305-4470/19/10/019
[12] DOI: 10.1016/0960-0779(94)E0101-T · Zbl 1080.35546 · doi:10.1016/0960-0779(94)E0101-T
[13] DOI: 10.1088/0305-4470/28/24/025 · Zbl 0876.35110 · doi:10.1088/0305-4470/28/24/025
[14] DOI: 10.1103/PhysRevE.59.2373 · doi:10.1103/PhysRevE.59.2373
[15] DOI: 10.1088/0305-4470/33/40/316 · Zbl 0959.35153 · doi:10.1088/0305-4470/33/40/316
[16] DOI: 10.1088/0305-4470/34/23/312 · Zbl 0978.35063 · doi:10.1088/0305-4470/34/23/312
[17] DOI: 10.1103/PhysRevLett.77.3276 · doi:10.1103/PhysRevLett.77.3276
[18] DOI: 10.1103/PhysRevLett.78.1607 · doi:10.1103/PhysRevLett.78.1607
[19] DOI: 10.1088/0953-4075/42/14/145307 · doi:10.1088/0953-4075/42/14/145307
[20] DOI: 10.1038/24567 · doi:10.1038/24567
[21] DOI: 10.1103/PhysRevLett.80.2027 · doi:10.1103/PhysRevLett.80.2027
[22] DOI: 10.1103/PhysRevLett.82.2228 · doi:10.1103/PhysRevLett.82.2228
[23] DOI: 10.1103/PhysRevLett.78.586 · doi:10.1103/PhysRevLett.78.586
[24] DOI: 10.1103/PhysRevLett.81.742 · doi:10.1103/PhysRevLett.81.742
[25] DOI: 10.1143/JPSJ.67.1822 · doi:10.1143/JPSJ.67.1822
[26] DOI: 10.1103/PhysRevA.59.1509 · doi:10.1103/PhysRevA.59.1509
[27] DOI: 10.1103/PhysRevLett.81.5257 · doi:10.1103/PhysRevLett.81.5257
[28] DOI: 10.1103/PhysRevLett.93.194102 · doi:10.1103/PhysRevLett.93.194102
[29] DOI: 10.1143/JPSJ.73.2996 · Zbl 1067.82004 · doi:10.1143/JPSJ.73.2996
[30] DOI: 10.1143/JPSJ.75.064002 · doi:10.1143/JPSJ.75.064002
[31] DOI: 10.1143/JPSJ.76.084002 · doi:10.1143/JPSJ.76.084002
[32] DOI: 10.1063/1.529756 · Zbl 1046.82512 · doi:10.1063/1.529756
[33] DOI: 10.1143/JPSJ.67.1175 · Zbl 0973.35170 · doi:10.1143/JPSJ.67.1175
[34] DOI: 10.1063/1.2423222 · Zbl 1121.37057 · doi:10.1063/1.2423222
[35] DOI: 10.1103/PhysRevLett.86.5043 · doi:10.1103/PhysRevLett.86.5043
[36] DOI: 10.1103/PhysRevE.67.046617 · doi:10.1103/PhysRevE.67.046617
[37] DOI: 10.1143/JPSJ.76.074005 · doi:10.1143/JPSJ.76.074005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.