×

zbMATH — the first resource for mathematics

Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Application to transport and continuum mechanics. (English) Zbl 1304.65251
Summary: We consider (hierarchical, Lagrange) reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized elliptic coercive partial differential equations. The essential ingredients are (primal-dual) Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold”-dimension reduction; efficient and effective greedy sampling methods for identification of optimal and numerically stable approximations-rapid convergence; a posteriori error estimation procedures-rigorous and sharp bounds for the linear-functional outputs of interest; and Offline-Online computational decomposition strategies-minimum marginal cost for high performance in the real-time/embedded (e.g., parameter-estimation, control) and many-query (e.g., design optimization, multi-model/scale) contexts. We present illustrative results for heat conduction and convection-diffusion, inviscid flow, and linear elasticity; outputs include transport rates, added mass, and stress intensity factors.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
65N15 Error bounds for boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
Software:
rbMIT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] rbMIT Software (2007) http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm . MIT, Cambridge
[2] Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142:1–88 · Zbl 0895.76040
[3] Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley-Interscience, New York · Zbl 1008.65076
[4] Almroth BO, Stern P, Brogan FA (1978) Automatic choice of global shape functions in structural analysis. AIAA J 16:525–528
[5] Anderson TL (2005) Fracture mechanics: fundamentals and application, 3rd edn. CRC Press, Boca Raton
[6] Arpaci VS (1966) Conduction heat transfer. Addison-Wesley, Reading · Zbl 0144.46703
[7] Arpaci VS, Larsen PS (1984) Convection heat transfer. Prentice Hall, Englewood Cliffs
[8] Atwell JA, King BB (2001) Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math Comput Model 33(1–3):1–19 · Zbl 0964.93032
[9] Babuška I (1971) Error-bounds for finite element method. Numer Math 16:322–333 · Zbl 0214.42001
[10] Babuška I, Osborn J (1991) Eigenvalue problems. In: Handbook of numerical analysis, vol II. Elsevier, Amsterdam, pp 641–787 · Zbl 0875.65087
[11] Babuška I, Rheinboldt W (1978) A posteriori error estimates for the finite element method. Int J Numer Methods Eng 12:1597–1615 · Zbl 0396.65068
[12] Babuška I, Rheinboldt W (1978) Error estimates for adaptive finite element computations. SIAM J Numer Anal 15:736–754 · Zbl 0398.65069
[13] Babuška I, Strouboulis T (2001) The finite element method and its reliability. Numerical mathematics and scientific computation. Clarendon, Oxford
[14] Bai ZJ (2002) Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl Numer Math 43(1–2):9–44 · Zbl 1012.65136
[15] Balmes E (1996) Parametric families of reduced finite element models: Theory and applications. Mech Syst Signal Process 10(4):381–394
[16] Balsa-Canto E, Alonso A, Banga J (2004) Reduced-order models for nonlinear distributed process systems and their application in dynamic optimization. Ind Eng Chem Res 43(13):3353–3363
[17] Banks HT, Kunisch K (1989) Estimation techniques for distributed parameter systems. Systems & control: foundations & applications. Birkhäuser, Boston · Zbl 0695.93020
[18] Barrault M, Nguyen NC, Maday Y, Patera AT (2004) An ”empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris, Sér I 339:667–672 · Zbl 1061.65118
[19] Barrett A, Reddien G (1995) On the reduced basis method. Z Angew Math Mech 75(7):543–549 · Zbl 0832.65047
[20] Barsom JM, Rolfe ST (1999) Fracture and fatigue control in structures. American society for testing and metals. Butterworth, Stoneham
[21] Bashir O, Willcox K, Ghattas O, var Bloemen Waanders B, Hill J (2008) Hessian-based model reduction for large-scale systems with initial condition inputs. Int J Numer Methods Eng 73(6):844–868 · Zbl 1195.76311
[22] Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs
[23] Becker R, Rannacher R (1996) A feedback approach to error control in finite element method: Basic analysis and examples. East-West J Numer Math 4:237–264 · Zbl 0868.65076
[24] Benner P, Mehrmann V, Sorensen D (eds) (2003) Dimension reduction of large-scale systems. Lecture notes in computational science and engineering. Springer, Heidelberg
[25] Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis of periodic structures. North-Holland, Amsterdam · Zbl 0404.35001
[26] Boyaval S (2007) Application of reduced basis approximation and a posteriori error estimation to homogenization theory. Multiscale Model Simul (to appear)
[27] Braess D (2001) Finite elements. Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge · Zbl 0976.65099
[28] Brezzi F (1974) On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal Numer 2:129–151 · Zbl 0338.90047
[29] Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer series in computational mathematics, vol 15. Springer, Berlin · Zbl 0788.73002
[30] Brezzi F, Rappaz J, Raviart P (1980) Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer Math 36:1–25 · Zbl 0488.65021
[31] Bui-Thanh T, Damodaran M, Willcox K (2003) Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics (AIAA Paper 2003-4213). In: Proceedings of the 15th AIAA computational fluid dynamics conference
[32] Bui-Thanh T, Willcox K, Ghattas O (2008) Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J Sci Comput (to appear) · Zbl 1196.37127
[33] Bui-Thanh T, Willcox K, Ghattas O (2007) Model reduction for large-scale systems with high-dimensional parametric input space (AIAA Paper 2007-2049). In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and material conference · Zbl 1196.37127
[34] Caloz G, Rappaz J (1997) Numerical analysis for nonlinear and bifurcation problems. In: Ciarlet P, Lions J (eds) Handbook of numerical analysis. Techniques of scientific computing (Part 2), vol V. Elsevier, Amsterdam, pp 487–637
[35] Cancès E, Le Bris C, Maday Y, Turinici G (2002) Towards reduced basis approaches in ab initio electronic structure computations. J Sci Comput 17(1–4):461–469 · Zbl 0998.81122
[36] Cancès E, Le Bris C, Nguyen NC, Maday Y, Patera AT, Pau GSH (2007) Feasibility and competitiveness of a reduced basis approach for rapid electronic structure calculations in quantum chemistry. In: Proceedings of the workshop for high-dimensional partial differential equations in science and engineering (Montreal) · Zbl 1330.81022
[37] Cazemier W (1997) Proper orthogonal decomposition and low dimensional models for turbolent flows. University of Groningen, Groningen
[38] Chen J, Kang SM (2001) Model-order reduction of nonlinear mems devices through arclength-based Karhunen-Loéve decomposition. In: Proceeding of the IEEE international symposium on circuits and systems, vol 2, pp 457–460
[39] Chen Y, White J (2000) A quadratic method for nonlinear model order reduction. In: Proceedings of the international conference on modeling and simulation of microsystems, pp 477–480
[40] Christensen E, Brøns M, Sørensen J (2000) Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM J Sci Comput 21(4):1419–1434 · Zbl 0959.35018
[41] Ciarlet PG (2002) The finite element method for elliptic problems. Classics in applied mathematics, vol 40. SIAM, Philadelphia
[42] Daniel L, Ong C, White J (2002) Geometrically parametrized interconnect performance models for interconnect synthesis. In: Proceedings of the 2002 international symposium on physical design. Assoc Comput Mach, New York, pp 202–207
[43] Dedè L (2008) Advanced numerical methods for the solution of optimal control problems described by pdes with environmental applications. PhD thesis, Politecnico di Milano
[44] Demmel JW (1997) Applied numerical linear algebra. SIAM, Philadelphia · Zbl 0879.65017
[45] Deparis S (2008) Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J Numer Anal 46:2039 · Zbl 1177.35148
[46] Farle O, Hill V, Nickel P, Dyczij-Edlinger R (2006) Multivariate finite element model order reduction for permittivity or permeability estimation. IEEE Trans Megn 42:623–626
[47] Fink JP, Rheinboldt WC (1983) On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z Angew Math Mech 63(1):21–28 · Zbl 0533.73071
[48] Fox RL, Miura H (1971) An approximate analysis technique for design calculations. AIAA J 9(1):177–179
[49] Ganapathysubramanian S, Zabaras N (2004) Design across length scales: a reduced-order model of polycrystal plasticity for the control of microstructure-sensitive material properties. Comput Methods Appl Mech Eng 193:5017–5034 · Zbl 1112.74353
[50] Girault V, Raviart P (1986) Finite element approximation of the Navier-Stokes equations. Springer, Berlin · Zbl 0585.65077
[51] Goberna MA, Lopez MA (1998) Linear semi-infinite optimization. Wiley, New York
[52] Grepl M (2005) Reduced-basis approximations and a posteriori error estimation for parabolic partial differential equations. PhD thesis, Massachusetts Institute of Technology · Zbl 1079.65096
[53] Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Model Math Anal Numer · Zbl 1142.65078
[54] Grepl MA, Nguyen NC, Veroy K, Patera AT, Liu GR (2007) Certified rapid solution of partial differential equations for real-time parameter estimation and optimization. In: Biegler LT, Ghattas O, Heinkenschloss M, Keyes D, van Wandeers B (eds) Proceedings of the 2nd Sandia workshop of PDE-constrained optimization: Real-time PDE-constrained optimization. SIAM computational science and engineering book series. SIAM, Philadelphia, pp 197–216
[55] Grepl MA, Patera AT (2005) A Posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Model Math Anal Numer 39(1):157–181 · Zbl 1079.65096
[56] Gresho P, Sani R (1998) Incompressible flow and the finite element method: advection-diffusion and isothermal laminar flow. Wiley, New York · Zbl 0941.76002
[57] Gunzburger MD (1989) Finite element methods for viscous incompressible flows. Academic Press, San Diego · Zbl 0697.76031
[58] Gunzburger MD (2003) Perspectives in flow control and optimization. Advances in design and control. SIAM, Philadelphia
[59] Gunzburger MD, Peterson J, Shadid JN (2007) Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput Methods Appl Mech 196:1030–1047 · Zbl 1121.65354
[60] Haasdonk B, Ohlberger M (2008) Reduced basis method for finite volume approximations of parametrized evolution equations. Math Model Numer Anal 42(2):277–302 · Zbl 1388.76177
[61] Huynh DBP (2007) Reduced-basis approximation and application to fracture and inverse problems. PhD thesis, Singapore-MIT Alliance, National University of Singapore
[62] Huynh DBP, Patera AT (2007) Reduced-basis approximation and a posteriori error estimation for stress intensity factors. Int J Numer Methods Eng 72(10):1219–1259 · Zbl 1194.74413
[63] Huynh DBP, Peraire J, Patera AT, Liu GR (2007) Reduced basis approximation and a posteriori error estimation for stress intensity factors: Application to failure analysis. In: Singapore-MIT alliance symposium
[64] Huynh DBP, Rozza G, Sen S, Patera AT (2007) A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C R Acad Sci Paris Ser I 345:473–478 · Zbl 1127.65086
[65] Isaacson E, Keller HB (1994) Computation of eigenvalues and eigenvectors, analysis of numerical methods. Dover, New York
[66] Ito K, Ravindran SS (1998) A reduced basis method for control problems governed by PDEs. In: Desch W, Kappel F, Kunisch K (eds) Control and estimation of distributed parameter systems. Birkhäuser, Boston, pp 153–168 · Zbl 0908.93025
[67] Ito K, Ravindran SS (1998) A reduced-order method for simulation and control of fluid flows. J Comput Phys 143(2):403–425 · Zbl 0936.76031
[68] Ito K, Ravindran SS (2001) Reduced basis method for optimal control of unsteady viscous flows. Int J Comput Fluid Dyn 15(2):97–113 · Zbl 1036.76011
[69] Ito K, Schroeter JD (2001) Reduced order feedback synthesis for viscous incompressible flows. Math Comput Model 33(1–3):173–192 · Zbl 0967.93013
[70] Jabbar M, Azeman A (2004) Fast optimization of electromagnetic-problems: the reduced-basis finite element approach. IEEE Trans Magn 40(4):2161–2163
[71] Johnson CR (1989) A Gershgorin-type lower bound for the smallest singular value. Linear Algebra Appl 112:1–7 · Zbl 0723.15013
[72] Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fenn 37 · Zbl 0063.03144
[73] Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal 40(2):492–515 · Zbl 1075.65118
[74] Kwang ATY (2006) Reduced basis methods for 2nd order wave equation: Application to one dimensional seismic problem. Master’s thesis, Singapore-MIT Alliance, Computation for Design and Optimization
[75] Le Bris C (2006) Private communication. MIT
[76] Lee MYL (1991) Estimation of the error in the reduced-basis method solution of differential algebraic equations. SIAM J Numer Anal 28:512–528 · Zbl 0737.65058
[77] LeGresley PA, Alonso JJ (2000) Airfoil design optimization using reduced order models based on proper orthogonal decomposition. In: Fluids 2000 conference and exhibit. Denver, CO (2000). Paper 2000-2545
[78] Loeve MM (1955) Probability theory. Van Nostrand, Princeton · Zbl 0066.10903
[79] Løvgren AE, Maday Y, Rønquist EM (2006) A reduced basis element method for complex flow systems. In: Wesseling P, Oñate E, Periaux J (eds) ECCOMAS CFD 2006 proceedings. TU Delft, Delft · Zbl 1129.76036
[80] Løvgren AE, Maday Y, Rønquist EM (2006) A reduced basis element method for the steady Stokes problem. Math Model Numer Anal 40(3):529–552 · Zbl 1129.76036
[81] Løvgren AE, Maday Y, Rønquist EM (2006) A reduced basis element method for the steady Stokes problem: Application to hierarchical flow systems. Model Identif Control 27(2):79–94
[82] Løvgren AE, Maday Y, Rønquist EM (2007) The reduced basis element method for fluid flows. In: Analysis and simulation of fluid dynamics. Advances in mathematical fluid mechanics. Birkauser, Boston, pp 129–154 · Zbl 1291.76247
[83] Ly H, Tran H (2001) Modeling and control of physical processes using proper orthogonal decomposition. Math Comput Model 33:223–236 · Zbl 0966.93018
[84] Machiels L, Maday Y, Oliveira IB, Patera A, Rovas D (2000) Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C R Acad Sci Paris, Sér I 331(2):153–158 · Zbl 0960.65063
[85] Maday Y, Patera A, Turinici G (2002) A Priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J Sci Comput 17(1–4):437–446 · Zbl 1014.65115
[86] Maday Y, Patera AT, Rovas DV (2002) A blackbox reduced-basis output bound method for noncoercive linear problems. In: Cioranescu D, Lions JL (eds) Nonlinear partial differential equations and their applications, Collége de France Seminar, vol XIV. Elsevier, Amsterdam, pp 533–569 · Zbl 1006.65124
[87] Maday Y, Patera AT, Turinici G (2002) Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations. C R Acad Sci Paris, Sér I 335(3):289–294 · Zbl 1009.65066
[88] Meyer CD (2000) Matrix analysis and applied linear algebra. SIAM, Philadelphia
[89] Meyer M, Matthies HG (2003) Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods. Comput Mech 31(1–2):179–191 · Zbl 1038.74559
[90] Mortenson ME (1990) Computer graphics handbook. Industrial Press, New York
[91] Murakami Y (2001) Stress intensity factors handbook. Elsevier, Amsterdam
[92] Nagy DA (1979) Modal representation of geometrically nonlinear behaviour by the finite element method. Comput Struct 10:683–688 · Zbl 0406.73071
[93] Newman AJ (1996) Model reduction via the Karhunen-Loeve expansion part i: an exposition. Technical report, Institute for System Research University of Maryland, pp 96–322
[94] Newman JN (1977) Marine hydrodynamics. MIT Press, Cambridge
[95] Nguyen NC (2005) Reduced-basis approximation and a posteriori error bounds for nonaffine and nonlinear partial differential equations: Application to inverse analysis. PhD thesis, Singapore-MIT Alliance, National University of Singapore
[96] Nguyen NC, Patera AT (2007) Efficient and reliable parameter estimation in heat conduction using Bayesian inference and a reduced basis method (in preparation)
[97] Nguyen NC, Veroy K, Patera AT (2005) Certified real-time solution of parametrized partial differential equations. In: Yip S (ed) Handbook of materials modeling. Springer, Berlin, pp 1523–1558
[98] Noor AK (1981) Recent advances in reduction methods for nonlinear problems. Comput Struct 13:31–44 · Zbl 0455.73080
[99] Noor AK (1982) On making large nonlinear problems small. Comput Methods Appl Mech Eng 34:955–985 · Zbl 0486.65037
[100] Noor AK, Balch CD, Shibut MA (1984) Reduction methods for non-linear steady-state thermal analysis. Int J Numer Methods Eng 20:1323–1348 · Zbl 0557.65076
[101] Noor AK, Peters JM (1980) Reduced basis technique for nonlinear analysis of structures. AIAA J 18(4):455–462
[102] Noor AK, Peters JM (1981) Bifurcation and post-buckling analysis of laminated composite plates via reduced basis techniques. Comput Methods Appl Mech Eng 29:271–295 · Zbl 0474.73100
[103] Noor AK, Peters JM (1981) Tracing post-limit-point paths with reduced basis technique. Comput Methods Appl Mech Eng 28:217–240 · Zbl 0466.73090
[104] Noor AK, Peters JM (1983) Multiple-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates. Int J Numer Methods Eng 19:1783–1803 · Zbl 0557.73070
[105] Noor AK, Peters JM (1983) Recent advances in reduction methods for instability analysis of structures. Comput Struct 16:67–80 · Zbl 0498.73094
[106] Noor AK, Peters JM, Andersen CM (1984) Mixed models and reduction techniques for large-rotation nonlinear problems. Comput Methods Appl Mech Eng 44:67–89 · Zbl 0535.73068
[107] Oliveira I, Patera AT (2007) Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim Eng 8:43–65 · Zbl 1171.65404
[108] Paraschivoiu M, Peraire J, Maday Y, Patera AT (1998) Fast bounds for outputs of partial differential equations. In: Borgaard J, Burns J, Cliff E, Schreck S (eds) Computational methods for optimal design and control. Birkhäuser, Boston, pp 323–360 · Zbl 0924.65057
[109] Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 10(4):487–502
[110] Parlett BN (1998) The symmetric eigenvalue problem. SIAM, Philadelphia
[111] Patera AT, Rønquist EM (2007) Reduced basis approximations and a posteriori error estimation for a Boltzmann model. Comput Methods Appl Mech Eng 196:2925–2942 · Zbl 1178.76236
[112] Patera AT, Rozza G (2008) Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Copyright MIT (2006–2007). MIT Pappalardo monographs in mechanical engineering (to appear)
[113] Pau GSH (2007) Reduced-basis method for quantum models of periodic solids. PhD thesis, Massachusetts Institute of Technology
[114] Peterson JS (1989) The reduced basis method for incompressible viscous flow calculations. SIAM J Sci Stat Comput 10(4):777–786 · Zbl 0672.76034
[115] Phillips JR (2000) Projection frameworks for model reduction of weakly nonlinear systems. In: Proceeding of the 37th ACM/IEEE Design Automation Conference, pp 184–189
[116] Phillips JR (2003) Projection-based approaches for model reduction of weakly nonlinear systems, time-varying systems. IEEE Trans Comput Aided Des Integr Circuits Syst 22:171–187 · Zbl 05449257
[117] Pierce N, Giles MB (2000) Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev 42(2):247–264 · Zbl 0948.65119
[118] Pironneau O (2006) Calibration of barrier options. In: Fitzgibbon W, Hoppe R, Periaux J, Pironneau O, Vassilevski Y (eds) Advances in numerical mathematics. Moscow/Houston, Russian Academy of Sciences/University of Houston, pp 183–192
[119] Porsching TA (1985) Estimation of the error in the reduced basis method solution of nonlinear equations. Math Comput 45(172):487–496 · Zbl 0586.65040
[120] Porsching TA, Lee MYL (1987) The reduced-basis method for initial value problems. SIAM J Numer Anal 24:1277–1287 · Zbl 0639.65039
[121] Prud’homme C, Rovas D, Veroy K, Maday Y, Patera A, Turinici G (2002) Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. J Fluids Eng 124(1):70–80
[122] Prud’homme C, Rovas D, Veroy K, Patera AT (2002) A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. Model Math Anal Numer 36(5):747–771 · Zbl 1024.65104
[123] Quarteroni A, Rozza G (2007) Numerical solution of parametrized Navier-Stokes equations by reduced basis method. Numer Methods Partial Differ Equ 23:923–948 · Zbl 1178.76238
[124] Quarteroni A, Rozza G, Quaini A (2006) Reduced basis method for optimal control af advection-diffusion processes. In: Fitzgibbon W, Hoppe R, Periaux J, Pironneau O, Vassilevski Y (eds) Advances in numerical mathematics. Russian Academy of Sciences/University of Houston, Moscow/Houston, pp 193–216
[125] Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Texts in applied mathematics, vol 37. Springer, New York
[126] Quarteroni A, Valli A (1997) Numerical approximation of partial differential equations, 2nd edn. Springer, Berlin · Zbl 1151.65339
[127] Ravindran SS (2000) Reduced-order adaptive controllers for fluid flows using pod. J Sci Comput 15(4):457–478 · Zbl 1048.76016
[128] Ravindran SS (2000) A reduced order approach to optimal control of fluids flow using proper orthogonal decomposition. Int J Numer Methods Fluids 34(5):425–448 · Zbl 1005.76020
[129] Ravindran SS (2002) Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J Sci Comput 23(6):1924–1942 · Zbl 1026.76015
[130] Rewienski M, White J (2003) A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans Comput-Aided Des Integr Circuits Syst 22:155–170 · Zbl 05449466
[131] Rheinboldt WC (1981) Numerical analysis of continuation methods for nonlinear structural problems. Comput Struct 13(1–3):103–113 · Zbl 0465.65030
[132] Rheinboldt WC (1993) On the theory and error estimation of the reduced basis method for multi-parameter problems. Nonlinear Anal Theory, Methods Appl 21(11):849–858 · Zbl 0802.65068
[133] Rovas D, Machiels L, Maday Y (2005) Reduced basis output bounds methods for parabolic problems. IMA J Appl Math · Zbl 1101.65099
[134] Rovas DV (2002) Reduced-basis output bound methods for parametrized partial differential equations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA
[135] Rozza G (2005) Real-time reduced basis techniques for arterial bypass geometries. In: Bathe K (ed) Proceedings of the third MIT conference on computational fluid and solid mechanics, June 14–17, 2005. Computational fluid and solid mechanics. Elsevier, Amsterdam, pp 1283–1287
[136] Rozza G (2005) Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity. Appl Numer Math 55(4):403–424 · Zbl 1112.65122
[137] Rozza G (2005) Shape design by optimal flow control and reduced basis techniques: Applications to bypass configurations in haemodynamics. PhD thesis, EPFL, Ecole Polytechnique Federale de Lausanne
[138] Rozza G (2008) Reduced basis method for Stokes equations in domains with non-affine parametric dependence. Comput Vis Sci 11(4). doi: 10.1007/s00791-006-0044-7
[139] Rozza G, Veroy K (2007) On the stability of reduced basis method for Stokes equations in parametrized domains. Comput Methods Appl Mech Eng 196:1244–1260 · Zbl 1173.76352
[140] Schiesser WE, Silebi CA (1997) Computational transport phenomena: numerical methods for the solution of transport problems. Cambridge University Press, Cambridge
[141] Sen S (2007) Reduced-basis approximation and a posteriori error estimation for non-coercive elliptic problems: Application to acoustics. PhD thesis, Massachusetts Institute of Technology
[142] Sen S, Veroy K, Huynh DBP, Deparis S, Nguyen NC, Patera AT (2006) ”Natural norm” a posteriori error estimators for reduced basis approximations. J Comput Phys 217:37–62 · Zbl 1100.65094
[143] Shi G, Shi CJR (2004) Parametric model order reduction for interconnect analysis. In: Proceedings of the 2004 conference on Asia South Pacific design automation: electronic design and solution fair. IEEE Press, New York, pp 774–779
[144] Sirisup S, Xiu D, Karniadakis G (2005) Equation-free/Galerkin-free POD-assisted computation of incompressible flows. J Comput Phys 207:617–642 · Zbl 1213.76146
[145] Sirovich L (1987) Turbulence and the dynamics of coherent structures, part 1: Coherent structures. Q Appl Math 45(3):561–571 · Zbl 0676.76047
[146] Strang G (2003) Introduction to linear algebra. Wellesley-Cambridge, Wellesley · Zbl 1042.15001
[147] Strang G, Fix GJ (1973) An analysis of the finite element method. Prentice-Hall, New York · Zbl 0356.65096
[148] Tonn T, Urban K (2006) A reduced-basis method for solving parameter-dependent convection-diffusion problems around rigid bodies. In: Wesseling P, Oñate E, Periaux J (eds) ECCOMAS CFD 2006 proceedings. TU Delft, Delft
[149] Trefethen L, III DB (1997) Numerical linear algebra. SIAM, Philadelphia · Zbl 0874.65013
[150] Veroy K (2003) Reduced-basis methods applied to problems in elasticity: Analysis and applications. PhD thesis, Massachusetts Institute of Technology
[151] Veroy K, Patera AT (2005) Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations; Rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids 47:773–788 · Zbl 1134.76326
[152] Veroy K, Prud’homme C, Patera AT (2003) Reduced-basis approximation of the viscous Burgers equation: Rigorous a posteriori error bounds. C R Acad Sci Paris, Sér I 337(9):619–624 · Zbl 1036.65075
[153] Veroy K, Prud’homme C, Rovas DV, Patera AT (2003) A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16th AIAA computational fluid dynamics conference. Paper 2003-3847
[154] Wang J, Zabaras N (2005) Using Bayesian statistics in the estimation of heat source in radiation. Int J Heat Mass Transfer 48:15–29 · Zbl 1122.80307
[155] Weile DS, Michielssen E (2001) Analysis of frequency selective surfaces using two-parameter generalized rational Krylov model-order reduction. IEEE Trans Antennas Propag 49(11):1539–1549 · Zbl 1002.78532
[156] Weile DS, Michielssen E, Gallivan K (2001) Reduced-order modeling of multiscreen frequency-selective surfaces using Krylov-based rational interpolation. IEEE Trans Antennas Propag 49(5):801–813
[157] Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330
[158] Zienkiewicz O, Taylor R (2000) Finite element method. The basis, vol 1. Butterworth-Heinemann, London · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.