Hu, P.; Kriz, I.; Ormsby, K. Convergence of the motivic Adams spectral sequence. (English) Zbl 1309.14018 J. \(K\)-Theory 7, No. 3, 573-596 (2011). Summary: We prove convergence of the motivic Adams spectral sequence to completions at \(p\) and \(\eta \) under suitable conditions. We also discuss further conditions under which \(\eta \) can be removed from the statement. Cited in 18 Documents MSC: 14F42 Motivic cohomology; motivic homotopy theory 55T15 Adams spectral sequences Keywords:motivic Adams spectral sequence; motivic homotopy theory PDF BibTeX XML Cite \textit{P. Hu} et al., J. \(K\)-Theory 7, No. 3, 573--596 (2011; Zbl 1309.14018) Full Text: DOI References: [1] DOI: 10.1007/s10240-010-0024-9 · Zbl 1227.14025 · doi:10.1007/s10240-010-0024-9 [2] DOI: 10.1007/BF01425486 · Zbl 0199.55501 · doi:10.1007/BF01425486 [3] DOI: 10.1017/is010001012jkt098 · Zbl 1248.14026 · doi:10.1017/is010001012jkt098 [4] DOI: 10.1016/j.jpaa.2010.06.017 · Zbl 1222.55014 · doi:10.1016/j.jpaa.2010.06.017 [5] DOI: 10.2140/agt.2005.5.615 · Zbl 1086.55013 · doi:10.2140/agt.2005.5.615 [6] DOI: 10.2140/gt.2010.14.967 · Zbl 1206.14041 · doi:10.2140/gt.2010.14.967 [7] DOI: 10.1016/0040-9383(79)90018-1 · Zbl 0417.55007 · doi:10.1016/0040-9383(79)90018-1 [8] Brown, Algebraic Topology and Algebraic K-theory 113 pp 101– (1987) [9] DOI: 10.1007/978-3-540-38117-4 · doi:10.1007/978-3-540-38117-4 [10] DOI: 10.1016/0021-8693(75)90145-3 · Zbl 0314.12104 · doi:10.1016/0021-8693(75)90145-3 [11] Adams, Stable homotopy and generalised homology (1973) · Zbl 0309.55016 [12] Voevodsky, Publ. Math. Inst. Hautes Études Sci. 98 pp 59– (2003) · Zbl 1057.14028 · doi:10.1007/s10240-003-0010-6 [13] Serre, Springer Monographs in Mathematics (2002) [14] Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics 67 (2005) · Zbl 1068.11023 [15] Ormsby, J. K-Theory 7 (2011) · Zbl 1258.14025 · doi:10.1017/is011004017jkt153 [16] DOI: 10.1007/s00208-008-0208-5 · Zbl 1180.14014 · doi:10.1007/s00208-008-0208-5 [17] Morel, Contemporary developments in algebraic K-theory pp 357– (2004) [18] DOI: 10.1007/978-94-007-0948-5_7 · doi:10.1007/978-94-007-0948-5_7 [19] Voevodsky, Publ. Math. Inst. Hautes Études Sci. 98 pp 1– (2003) · Zbl 1057.14027 · doi:10.1007/s10240-003-0009-z This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.