zbMATH — the first resource for mathematics

Computational homogenization of porous materials of Green type. (English) Zbl 1309.74061
Summary: The constitutive response of porous materials is investigated computationally. For the solid phase elasto- plastic behavior of Green type is considered, i.e. an isotropic compressible yield criterion is assumed. A wide range of material parameters and porosities from 0.1 to 30 % are investigated by means of FEM simulations of periodic ensembles of spherical pores. The dilatation of the pores and of the compressible matrix are evaluated. It is found that a large part of the total dilatation is due to plastic volume changes of the solid phase. The asymptotic stress states of the simulations are compared to analytical predictions by W. Q. Shen et al. [“Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media”, Comput. Mater. Sci. 62, 189–194 (2012; doi:10.1016/j.commatsci.2012.05.021)]. Based on the computational data, an effective constitutive law is proposed and verified by means of additional computations. A three-scale homogenization procedure for double porous materials is proposed that depends only on the micro- and mesoscale porosity and the yield stress of the solid phase.

74Q05 Homogenization in equilibrium problems of solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
PDF BibTeX Cite
Full Text: DOI
[1] Badiche, X; Forest, S; Guibert, T; Bienvenu, Y; Bartout, JD; Ienny, P; Croset, M; Bernet, H, Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Mater Sci Eng A, 289, 276-288, (2000)
[2] Besson, J; Abouaf, M, Behaviour of cylindrical HIP containers, Int J Solids Struct, 28, 691-702, (1989)
[3] Castañeda, PP, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory, J Mech Phys Solids, 50, 737-757, (2002) · Zbl 1116.74412
[4] Danas, K; Aravas, N, Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations, Compos Part B Eng, 43, 2544-2559, (2012)
[5] Danas, K; Castañeda, PP, A finite-strain model for anisotropic viscoplastic porous media: I-theory, Eur J Mech A, 28, 387-401, (2009) · Zbl 1158.74445
[6] Danas, K; Castañeda, PP, A finite-strain model for anisotropic viscoplastic porous media: II-applications, Eur J Mech A, 28, 402-416, (2009) · Zbl 1158.74446
[7] Deshpande, V; Fleck, N, Isotropic constitutive models for metallic foams, J Mech Phys Solids, 48, 1253-1283, (2000) · Zbl 0984.74018
[8] Dirrenberger, J; Forest, S; Jeulin, D, Elastoplasticity of auxetic materials, Comput Mater Sci, 64, 57-61, (2012)
[9] Forest, S; Blazy, JS; Chastel, Y; Moussy, F, Continuum modeling of strain localization phenomena in metallic foams, J Mater Sci, 40, 5903-5910, (2005)
[10] Fritzen, F; Forest, S; Böhlke, T; Kondo, D; Kanit, T, Computational homogenization of elasto-plastic porous metals, Int J Plast, 29, 102-119, (2012)
[11] Gărăjeu M (1995) Contribution à l’étude du comportement non linéaire de milieux poreux avec ou sans renfort. Ph.D. thesis, University of Marseille
[12] Green, R, A plasticity theory for porous solids, Int J Mech Sci, 14, 215-224, (1972) · Zbl 0247.73038
[13] Guo, T; Faleskog, J; Shih, C, Continiuum modeling of a porous solid with pressure-sensitive dilatant matrix, J Mech Phys Solids, 56, 2188-2212, (2008) · Zbl 1171.74338
[14] Gurson, A, Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media, J Eng Mater Technol, 99, 2-15, (1977)
[15] Jeong, HY, A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices, Int J Solids Struct, 39, 1385-1403, (2002) · Zbl 1090.74566
[16] Jeong, HY; Pan, J, A macroscopic constitutive law for porous solids with pressure-sensitive matrices and its implications to plastic flow localization, Int J Solids Struct, 32, 3669-3691, (1995) · Zbl 0877.73018
[17] Lee, J; Oung, J, Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials, J Appl Mech, 67, 288-297, (2000) · Zbl 1110.74534
[18] Lin, J; Kanit, T; Monchiet, V; Shao, JF; Kondo, D, Numerical implementation of a recent improved Gurson-type model and application to ductile fracture, Comput Mater Sci, 47, 901-906, (2010)
[19] Lubliner J (1990) Plasticity theory. Macmillan, New York · Zbl 0745.73006
[20] Maghous, S; Dormieux, L; Barthélémy, J, Micromechanical approach to the strength properties of frictional geomaterials, Eur J Mech A, 28, 179-188, (2009) · Zbl 1155.74381
[21] McClintock, F, A criterion for ductile fracture by the growth of holes, ASME J Appl Mech, 35, 363-371, (1968)
[22] Michel, J; Suquet, P, The constitutive law of nonlinear viscous and porous materials, J Mech Phys Solids, 40, 783-812, (1992) · Zbl 0825.73021
[23] Monchiet V (2006) Contributions à à la modélisation micromécanique de l’endommagement et de la fatigue des métaux ductiles. Ph.D. thesis, Université des sciences et Technologies de Lille, Lille · Zbl 1090.74566
[24] Monchiet, V; Kondo, D, Exact solution of a plastic hollow sphere with a Mises-schleicher matrix, Int J Eng Sci, 51, 168-178, (2012) · Zbl 1423.74333
[25] Monchiet, V; Charkaluk, E; Kondo, D, A micromechanics-based modification of the Gurson criterion by using eshelby-like velocity fields, Eur J Mech A, 30, 940-949, (2011) · Zbl 1278.74024
[26] Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam · Zbl 0924.73006
[27] Niordson, CF, Void growth to coalescence in a non-local material, Eur J Mech A, 27, 222-233, (2008) · Zbl 1133.74010
[28] Ponte-Castañeda, P, The effective mechanical properties of nonlinear isotropic composites, J Mech Phys Solids, 39, 45-71, (1991) · Zbl 0734.73052
[29] Raghava, R; Caddell, R; Yeh, G, A macroscopic yield criterion for crystalline polymers, Int J Mech Sci, 15, 967-974, (1973)
[30] Raghava, R; Caddell, R; Yeh, G, The macroscopic yield behavior of polymers, J Mater Sci, 9, 225-232, (1973)
[31] Rice, JR; Tracey, DM, On a ductile enlargement of voids in triaxial stress fields, J Mech Phys Solids, 17, 201-217, (1969)
[32] Schleicher F (1926) Zeitschrift für Angewandte Mathematik und Mechanik 6:199 · Zbl 1158.74446
[33] Schöberl, J, Netgen an advancing front 2d/3d-mesh generator based on abstract rules, Comput Vis Sci, 1, 41-52, (1997) · Zbl 0883.68130
[34] Shen W (2011) Modélisations micro-macro du comportement mécanique des matériaux poreux ductiles : application à à l’argilite du Callovo-Oxfordien. Ph.D. thesis, University of Lille, Lille
[35] Shen, W; Shao, J; Dormieux, L; Kondo, D, Approximate criteria for ductile porous materials having a Green type matrix: application to double porous media, Comput Mater Sci, 62, 189-194, (2012)
[36] Suquet P (1995) Overall properties of nonlinear composites: a modified secant moduli theory and its link with ponte castañeda’s nonlinear variational procedure 320:563-571 · Zbl 0830.73046
[37] Torquato S (2006) Random heterogeneous materials, 2 edn. Springer, Newq York
[38] Tvergaard, V, Influence of voids on shear band instabilities under plane strain conditions, Int J Fract, 17, 389-407, (1981)
[39] Tvergaard, V; Needleman, A, Analysis of cup-cone fracture in round tensile bar, Acta Metal, 32, 157-169, (1984)
[40] Vincent, PG; Monerie, Y; Suquet, P, Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations, Int J Solids Struct, 46, 480-506, (2009) · Zbl 1215.74021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.