×

zbMATH — the first resource for mathematics

An improved approximate analytic solution for Riccati equations over extended intervals. (English) Zbl 1310.34022
Summary: In this paper, we present a new effective approach based on our previous method for solving Riccati equations [A. R. Vahidi and M Didgar, “An improved method for determining the solution of Riccati equations”, Neural Comput. Appl. 23, No. 5, 1229–1237 (2013; doi:10.1007/s00521-012-1064-5)]. The proposed technique combines transformation of variables with the Laplace Adomian decomposition method, which is a variant of the classic Adomian decomposition method. The method examined practicality for several specific examples of the Riccati equation. Numerical results show that the proposed method is more efficient and accurate than other applied methods over extended intervals, and stands in good agreement to the exact solutions. The obtained results provide a rapidly convergent series, from which we achieve a high degree of accuracy using only a few terms of the recursion scheme. Thus we have developed a natural sequence of rational approximations as a technique of solution continuation for the Riccati equation.

MSC:
34A45 Theoretical approximation of solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems, general theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Abbasbandy, Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method, Appl. Math. Comput., 172 (2006), 485–490. · Zbl 1088.65063 · doi:10.1016/j.amc.2005.02.014
[2] S. Abbasbandy, Iterated He’s homotopy perturbation method for quadratic Riccati differential equation, Appl. Math. Comput., 175 (2006), 581–589. · Zbl 1089.65072 · doi:10.1016/j.amc.2005.07.035
[3] S. Abbasbandy, A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials, J. Comput. Appl. Math., 207 (2007), 59–63. · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012
[4] A. Abdelrazec and D. Pelinovsky, Convergence of the Adomian Decomposition Method for Initial-Value Problems, Numer. Methods Partial Differential Equations., 27 (2011), 749–766. · Zbl 1250.65089 · doi:10.1002/num.20549
[5] G. Adomian, Nonlinear Stochastic Operator Equations, Academic, Orlando, FL (1986). · Zbl 0609.60072
[6] G. Adomian and R. Rach, On linear and nonlinear integro-differential equations, J. Math. Anal. Appl., 113 (1986), 199–201. · Zbl 0601.45009 · doi:10.1016/0022-247X(86)90343-4
[7] G. Adomian and R. Rach, On the solution of nonlinear differential equations with convolution product nonlinearities, J. Math. Anal. Appl., 114 (1986), 171–175. · Zbl 0588.34004 · doi:10.1016/0022-247X(86)90074-0
[8] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Dordrecht (1994). · Zbl 0802.65122
[9] H. Bulut and D. J. Evans, On the solution of the Riccati equation by the decomposition method, Int. J. Comput. Math., 79 (2002), 103–109. · Zbl 0995.65073 · doi:10.1080/00207160211917
[10] M. A. El-Tawil, A. A. Bahnasawi and A. Abdel-Naby, Solving Riccati differential equation using Adomian’s decomposition method, Appl. Math. Comput., 157 (2004), 503–514. · Zbl 1054.65071 · doi:10.1016/j.amc.2003.08.049
[11] Y. Khan, An effective modification of the Laplace decomposition method for nonlinear equations, Int. J. Nonlinear Sci. Num. Simul., 10 (2009), 1373–1376. · Zbl 06942515
[12] S. A. Khuri, A new approach to Bratu’s problem, Appl. Math. Comput., 147 (2004), 131–136. · Zbl 1032.65084 · doi:10.1016/S0096-3003(02)00656-2
[13] F. Mohammadi and M. M. Hosseini, A comparative study of numerical methods for solving quadratic Riccati differential equations, J. Franklin Inst., 348 (2011), 156–164. · Zbl 1210.65131 · doi:10.1016/j.jfranklin.2010.10.011
[14] W. T. Reid, Riccati Differential Equations, Academic Press, New York (1972). · Zbl 0254.34003
[15] P. Y. Tsai and C. K. Chen, An approximate analytic solution of the nonlinear Riccati differential equation, J. Franklin Inst., 347 (2010), 1850–1862. · Zbl 1210.34016 · doi:10.1016/j.jfranklin.2010.10.005
[16] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Beijing, and Springer, Berlin (2009). · Zbl 1175.35001
[17] A. M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Higher Education Press, Beijing, and Springer, Berlin (2011). · Zbl 1227.45002
[18] A. M. Wazwaz, The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations, Appl. Math. Comput., 216 (2010), 1304–1309. · Zbl 1190.65199 · doi:10.1016/j.amc.2010.02.023
[19] E. Yusufoğlu, Numerical solution of Duffing equation by the Laplace decomposition algorithm, Appl. Math. Comput., 177 (2006), 572–580. · Zbl 1096.65067 · doi:10.1016/j.amc.2005.07.072
[20] E. Yusufoğlu, Laplace decomposition algorithm and Padé approximants for population model, J. Algorithms Comput. Tech. 3 (2009), 179–189. · Zbl 1221.45009 · doi:10.1260/174830109787913958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.