×

Modular invariants and twisted equivariant \(K\)-theory. II: Dynkin diagram symmetries. (English) Zbl 1310.81137

This article deepens the relationship between conformal field theory and twisted \(K\)-theory. Conformal field theories are two-dimensional quantum field theories with many symmetries. They consist of two simpler halves, chiral field theories, that are glued together; the glueing is described by the modular invariant. A long-term goal of this article is to understand better which modular invariants come from a conformal field theory.
\(K\)-theory here also means finer structure such as actual vector bundles, and related theories such as \(K\)-homology and eventually KK-theory.
Freed, Hopkins and Teleman have identified the Verlinde rings of a group \(G\) with certain equivariant twisted \(K\)-theory groups of \(G\), with \(G\) acting on itself by conjugation. This result may be interpreted in terms of conformal field theory, but only encodes limited information about the chiral halves. More structure of a conformal field theory may be described in terms of an associated subfactor; the structure considered in this article, besides the Verlinde ring, is the full system, the two alpha-induction maps between them, the neutral system, the nimrep and D-brane charges. Here these invariants are described systematically in the language of twisted \(K\)-theory, in the case of general Lie groups. This \(K\)-theoretic approach is crucial, among other things, to prove a conjecture about the nimreps for certain natural modular invariants.
For Part I see [the authors, Commun. Number Theory Phys. 3, No. 2, 209–296 (2009; Zbl 1182.19003)].

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
46L80 \(K\)-theory and operator algebras (including cyclic theory)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)

Citations:

Zbl 1182.19003
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/s002200000241 · Zbl 0987.46044 · doi:10.1007/s002200000241
[2] DOI: 10.1007/s002200050455 · Zbl 0924.46047 · doi:10.1007/s002200050455
[3] DOI: 10.1007/s00208-007-0171-6 · Zbl 1147.19006 · doi:10.1007/s00208-007-0171-6
[4] Int. J. Mod. Phys. A8 pp 4103– (1993)
[5] DOI: 10.1007/s00220-006-0184-0 · Zbl 1121.81111 · doi:10.1007/s00220-006-0184-0
[6] DOI: 10.1007/s002200050302 · Zbl 0908.46044 · doi:10.1007/s002200050302
[7] DOI: 10.1016/j.top.2006.06.007 · Zbl 1111.55005 · doi:10.1016/j.top.2006.06.007
[8] Nucl. Phys. (Proc. Suppl.) 5B pp 87– (1988)
[9] Nucl. Phys. B581 pp 679– (2000)
[10] DOI: 10.1007/BF01221394 · Zbl 0639.17008 · doi:10.1007/BF01221394
[11] Graduate Texts in Mathematics 87 (1994)
[12] DOI: 10.1007/s00220-007-0396-y · Zbl 1162.58008 · doi:10.1007/s00220-007-0396-y
[13] DOI: 10.1007/s002220050253 · Zbl 0944.46059 · doi:10.1007/s002220050253
[14] J. High Energy Phys. (2004)
[15] DOI: 10.1215/S0012-7094-00-10311-0 · Zbl 0947.19004 · doi:10.1215/S0012-7094-00-10311-0
[16] DOI: 10.4310/ATMP.2008.v12.n2.a1 · Zbl 1144.81498 · doi:10.4310/ATMP.2008.v12.n2.a1
[17] J. High Energy Phys. 12 (2002)
[18] DOI: 10.1007/BF02100278 · Zbl 0732.17016 · doi:10.1007/BF02100278
[19] DOI: 10.1007/s002200050798 · Zbl 0988.46047 · doi:10.1007/s002200050798
[20] de Gruyter Studies in Mathematics 18 (1994)
[21] J. Reine Angew. Math. 635 pp 97– (2009)
[22] Trans. Amer. Math. Soc. 361 pp 1269– (2009)
[23] Differential Geometric Methods in Theoretical Physics (Como, 1987) pp 165– (1988)
[24] DOI: 10.1007/s002200050765 · Zbl 0948.46048 · doi:10.1007/s002200050765
[25] Mathematical physics in mathematics and physics. Quantum and operator algebraic aspects 30 pp 11– (2001)
[26] DOI: 10.1090/conm/294/04971 · doi:10.1090/conm/294/04971
[27] Adv. Theor. Math. Phys. 3 pp 671– (1999) · Zbl 0972.81164 · doi:10.4310/ATMP.1999.v3.n3.a8
[28] DOI: 10.1007/BF02684593 · Zbl 0199.26202 · doi:10.1007/BF02684593
[29] Int. J. Mod. Phys. 5A pp 2903– (1990)
[30] Vertex Operator Algebras in Mathematics and Physics pp 13– (2003) · doi:10.1090/fic/039/02
[31] DOI: 10.1007/PL00005523 · Zbl 1040.81084 · doi:10.1007/PL00005523
[32] Ukr. Mat. Visn. 1 pp 287– (2004)
[33] Nucl. Phys. B603 pp 449– (2001)
[34] Int. Math. Res. Notices 27 (2003)
[35] DOI: 10.1090/conm/294/04972 · doi:10.1090/conm/294/04972
[36] Lectures on Operator Theory pp 243– (2000)
[37] Internat. J. Modern Phys. B8 pp 3693– (1994)
[38] DOI: 10.1007/s00229-004-0447-z · Zbl 1055.22011 · doi:10.1007/s00229-004-0447-z
[39] Topology, Geometry and Quantum Field Theory 308 pp 194– (2004)
[40] The Santa Cruz Conference on Finite Groups 37 pp 183– (1980)
[41] DOI: 10.1142/S0129055X95000232 · Zbl 0836.46055 · doi:10.1142/S0129055X95000232
[42] J. Math. Phys. 51 (2010)
[43] K-theory and noncommutative geometry. EMS Ser. Congr. Rep. pp 117– (2008)
[44] Infinite-dimensional Lie Algebras (1990) · Zbl 0716.17022
[45] Algèbres d’opérateurs 725 pp 237– (1979)
[46] DOI: 10.1007/BF02096964 · Zbl 0787.53068 · doi:10.1007/BF02096964
[47] Local Quantum Physics (1992)
[48] DOI: 10.1007/BF01464283 · Zbl 0588.17014 · doi:10.1007/BF01464283
[49] Groups and Symmetries 47 pp 173– (2009)
[50] DOI: 10.1007/s002200050695 · Zbl 0959.17019 · doi:10.1007/s002200050695
[51] DOI: 10.1007/BF02100186 · Zbl 0833.17026 · doi:10.1007/BF02100186
[52] J. High Energy Phys. (2005)
[53] Moonshine Beyond the Monster: The bridge connecting algebra, modular forms and physics (2006)
[54] DOI: 10.1007/s10801-005-2514-2 · Zbl 1103.17007 · doi:10.1007/s10801-005-2514-2
[55] J. High Energy Phys. pp 30– (2007)
[56] J. High Energy Phys. pp 27– (2004)
[57] J. High Energy Phys. (2004)
[58] Nucl. Phys. B639 pp 471– (2002)
[59] DOI: 10.1007/BF02101182 · Zbl 0863.17020 · doi:10.1007/BF02101182
[60] DOI: 10.1007/BF02100029 · Zbl 0736.17033 · doi:10.1007/BF02100029
[61] DOI: 10.1142/9789814304634_0056 · doi:10.1142/9789814304634_0056
[62] DOI: 10.4007/annals.2011.174.2.5 · Zbl 1239.19002 · doi:10.4007/annals.2011.174.2.5
[63] DOI: 10.1112/jtopol/jtr019 · Zbl 1241.19002 · doi:10.1112/jtopol/jtr019
[64] J. Topol. 1 pp 16– (2008) · doi:10.3731/topologica.1.016
[65] J. High Energy Phys. (2004)
[66] DOI: 10.1007/BF01228414 · Zbl 0642.22005 · doi:10.1007/BF01228414
[67] DOI: 10.1142/S0129055X09003761 · Zbl 1187.46049 · doi:10.1142/S0129055X09003761
[68] Münster J. Math. 2 pp 95– (2009)
[69] Commun. Math. Phys. 237 pp 309– (2003) · Zbl 1042.46034 · doi:10.1007/s00220-003-0862-0
[70] Quantum Symmetries on Operator Algebras (1998) · Zbl 0924.46054
[71] L’Enseignement Math. (2) 55 pp 33– (2009)
[72] DOI: 10.1007/s00220-011-1329-3 · Zbl 1236.46055 · doi:10.1007/s00220-011-1329-3
[73] DOI: 10.4310/CNTP.2009.v3.n2.a1 · Zbl 1182.19003 · doi:10.4310/CNTP.2009.v3.n2.a1
[74] DOI: 10.1007/978-3-540-34197-0_6 · doi:10.1007/978-3-540-34197-0_6
[75] Operator Algebras and Mathematical Physics pp 89– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.